Giải bài tập 9.7 trang 76 SGK Toán 9 tập 2 - Kết nối tri thức


Cho đường tròn (O) ngoại tiếp tam giác ABC. Tính bán kính của (O), biết rằng tam giác ABC vuông cân tại A và có cạnh bên bằng (2sqrt 2 cm).

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Cho đường tròn (O) ngoại tiếp tam giác ABC. Tính bán kính của (O), biết rằng tam giác ABC vuông cân tại A và có cạnh bên bằng \(2\sqrt 2 cm\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+ Áp dụng định lí Pythagore vào tam giác ABC vuông tại A tính BC.

+ Vì O là trung điểm của BC nên \(OB = OC = \frac{{BC}}{2}\) là bán kính đường tròn (O) ngoại tiếp tam giác ABC.

Lời giải chi tiết

Tam giác ABC vuông cân tại A nên \(AB = AC = 2\sqrt 2 cm\)

Áp dụng định lí Pythagore vào tam giác ABC vuông tại A ta có:

\(B{C^2} = A{B^2} + A{C^2} = {\left( {2\sqrt 2 } \right)^2} + {\left( {2\sqrt 2 } \right)^2} = 16 \) suy ra \(BC = 4cm\)

Vì O là trung điểm của BC nên \(OB = OC = \frac{{BC}}{2} = \frac{4}{2} = 2\left( {cm} \right)\)

Vì tam giác ABC vuông tại A nên tam giác ABC nội tiếp đường tròn tâm O, bán kính OC.

Vậy bán kính đường tròn (O) ngoại tiếp tam giác ABC bằng 2cm.


Bình chọn:
4.4 trên 16 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí