Giải bài tập 9.30 trang 89 SGK Toán 9 tập 2 - Kết nối tri thức


Cho vòng quay mặt trời gồm tám cabin như Hình 9.55. Hỏi để cabin A di chuyển đến vị trí cao nhất thì vòng quay phải quay thuận chiều kim đồng hồ quanh tâm bao nhiêu độ?

Đề bài

Cho vòng quay mặt trời gồm tám cabin như Hình 9.55. Hỏi để cabin A di chuyển đến vị trí cao nhất thì vòng quay phải quay thuận chiều kim đồng hồ quanh tâm bao nhiêu độ?

 

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+ Gọi tám cabin tạo thành một bát giác đều BACDEFGH nội tiếp đường tròn (O). 

+ Chứng minh \(\Delta HOB = \Delta HOG = \Delta FOG = \Delta FOE = \Delta DOE = \Delta DOC = \Delta AOC = \Delta AOB\left( {c.c.c} \right)\), suy ra: \(\widehat {HOB} = \widehat {HOG} = \widehat {GOF} = \widehat {EOF} = \widehat {DOE} = \widehat {COD} = \widehat {AOC} = \widehat {AOB} = \frac{{{{360}^o}}}{8} = {45^o}\)

+ Tính góc AOG

+ Để cabin A di chuyển đến vị trí cao nhất (vị trí cabin G) thì vòng quay phải quay theo chiều thuận kim đồng hồ quanh tâm góc \({135^o}\).

Lời giải chi tiết

Gọi tám cabin tạo thành một bát giác đều BACDEFGH nội tiếp đường tròn (O).

Vì BACDEFGH là bát giác đều nên

\(AB = AC = CD = DE = EF = FG = GH = HB\)

Vì BACDEFGH là bát giác nội tiếp đường tròn (O) nên

\(OA = OB = OC = OD = OE = OF = OH = OG\)

Do đó

\(\Delta HOB = \Delta HOG = \Delta FOG = \Delta FOE = \Delta DOE = \Delta DOC = \Delta AOC = \Delta AOB\left( {c.c.c} \right)\)

Suy ra

\(\widehat {HOB} = \widehat {HOG} = \widehat {GOF} = \widehat {EOF} = \widehat {DOE} = \widehat {COD} = \widehat {AOC} = \widehat {AOB} = \frac{{{{360}^o}}}{8} = {45^o}\)

Ta có:

\(\widehat {AOG} = \widehat {AOB} + \widehat {BOH} + \widehat {HOG} = {45^o} + {45^o} + {45^o} = {135^o}\)

Để cabin A di chuyển đến vị trí cao nhất (vị trí cabin G) thì vòng quay phải quay theo chiều thuận kim đồng hồ quanh tâm góc \({135^o}\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí