Giải bài tập 8 trang 80 sách bài tập toán 12 - Chân trời sáng tạo>
Một công ty bảo hiểm ô tô nhận thấy nếu một tài xế gặp sự cố trong một năm thì xác suất gặp sự cố ở năm tiếp theo là 0,2; còn nếu trong một năm không gặp sự cố nào thì xác suất gặp sự cố ở năm tiếp theo là 0,05. Xác suất để một tài xế gặp sự cố ở năm đầu tiên lái xe là 0,1. Sử dụng sơ đồ hình cây: a) Tính xác suất để một tài xế không gặp sự cố nào trong 2 năm đầu tiên lái xe. b) Tính xác suất để một tài xế gặp sự cố trong cả 2 năm đầu tiên lái xe. Làm tròn kết quả đến hàng phần trăm.
Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Một công ty bảo hiểm ô tô nhận thấy nếu một tài xế gặp sự cố trong một năm thì xác suất gặp sự cố ở năm tiếp theo là 0,2; còn nếu trong một năm không gặp sự cố nào thì xác suất gặp sự cố ở năm tiếp theo là 0,05. Xác suất để một tài xế gặp sự cố ở năm đầu tiên lái xe là 0,1. Sử dụng sơ đồ hình cây:
a) Tính xác suất để một tài xế không gặp sự cố nào trong 2 năm đầu tiên lái xe.
b) Tính xác suất để một tài xế gặp sự cố trong cả 2 năm đầu tiên lái xe. Làm tròn kết quả đến hàng phần trăm.
Phương pháp giải - Xem chi tiết
Sử dụng sơ đồ hình cây.
Lời giải chi tiết
Gọi \(A\) là biến cố “Tài xế không gặp sự cố trong năm đầu tiên lái xe”, \(B\) là biến cố “Tài xế không gặp sự cố trong năm thứ hai lái xe”.
Xác suất để một tài xế gặp sự cố ở năm đầu tiên lái xe là 0,1 nên ta có \(P\left( {\overline A } \right) = 0,1\).
Do đó \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - 0,1 = 0,9\).
Nếu một tài xế gặp sự cố trong một năm thì xác suất gặp sự cố ở năm tiếp theo là 0,2 nên ta có \(P\left( {\overline B |\overline A } \right) = 0,2\).
Do đó \(P\left( {B|\overline A } \right) = 1 - P\left( {\overline B |\overline A } \right) = 1 - 0,2 = 0,8\).
Nếu trong một năm không gặp sự cố nào thì xác suất gặp sự cố ở năm tiếp theo là 0,05 nên ta có \(P\left( {\overline B |A} \right) = 0,05\).
Do đó \(P\left( {B|A} \right) = 1 - P\left( {\overline B |A} \right) = 1 - 0,05 = 0,95\).
Ta có sơ đồ hình cây như sau:
a) Xác suất để một tài xế không gặp sự cố nào trong 2 năm đầu tiên lái xe là: \(P\left( {AB} \right) = 0,855\).
b) Xác suất để một tài xế gặp sự cố trong cả 2 năm đầu tiên lái xe là \(P\left( {\overline A \overline B } \right) = 0,02\).
- Giải bài tập 9 trang 80 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài tập 10 trang 80 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài tập 7 trang 80 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài tập 6 trang 80 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài tập 5 trang 80 sách bài tập toán 12 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 8 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 3 trang 87 sách bài tập toán 12 - Chân trời sáng tạo