Giải bài tập 4 trang 80 sách bài tập toán 12 - Chân trời sáng tạo>
Cho hai biến cố \(A,B\) có \(P\left( A \right) = 0,4;P\left( B \right) = 0,8;P\left( {A \cup B} \right) = 0,9\). Tính \(P\left( {A|B} \right);P\left( {A|\overline B } \right);P\left( {\overline A |B} \right);P\left( {\overline A |\overline B } \right)\).
Đề bài
Cho hai biến cố \(A,B\) có \(P\left( A \right) = 0,4;P\left( B \right) = 0,8;P\left( {A \cup B} \right) = 0,9\).
Tính \(P\left( {A|B} \right);P\left( {A|\overline B } \right);P\left( {\overline A |B} \right);P\left( {\overline A |\overline B } \right)\).
Phương pháp giải - Xem chi tiết
‒ Sử dụng quy tắc cộng xác suất: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).
‒ Sử dụng công thức tính xác suất của \(A\) với điều kiện \(B\): \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\).
Lời giải chi tiết
Theo quy tắc cộng xác suất ta có: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).
Suy ra \(P\left( {AB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cup B} \right) = 0,4 + 0,8 - 0,9 = 0,3\).
Theo công thức tính xác suất có điều kiện, ta có: \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,3}}{{0,8}} = 0,375\).
Vì \(AB\) và \(A\overline B \) là hai biến cố xung khắc và \(AB \cup A\overline B = A\) nên theo tính chất của xác suất, ta có \(P\left( {A\overline B } \right) = P\left( A \right) - P\left( {AB} \right) = 0,4 - 0,3 = 0,1\).
Ta có: \(P\left( {\overline B } \right) = 1 - P\left( B \right) = 1 - 0,8 = 0,2\).
Theo công thức tính xác suất có điều kiện ta có: \(P\left( {A|\overline B } \right) = \frac{{P\left( {A\overline B } \right)}}{{P\left( {\overline B } \right)}} = \frac{{0,1}}{{0,2}} = 0,5\).
Do \(\overline A |B\) và \(A|B\) là hai biến cố đối nên ta có: \(P\left( {\overline A |B} \right) = 1 - P\left( {A|B} \right) = 1 - 0,375 = 0,625\).
Do \(\overline A |\overline B \) và \(A|\overline B \) là hai biến cố đối nên ta có: \(P\left( {\overline A |\overline B } \right) = 1 - P\left( {A|\overline B } \right) = 1 - 0,5 = 0,5\).
- Giải bài tập 5 trang 80 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài tập 6 trang 80 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài tập 7 trang 80 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài tập 8 trang 80 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài tập 9 trang 80 sách bài tập toán 12 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 8 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 3 trang 87 sách bài tập toán 12 - Chân trời sáng tạo