Giải bài tập 6 trang 78 SGK Toán 9 tập 2 - Cánh diều>
Cho tứ giác nội tiếp ABCD có hai đường chéo AC và BD cắt nhau tại I. a) Hai góc ABD và ACD có bằng nhau hay không? Vì sao? b) Chứng minh (Delta AIBbacksim Delta IDC) và IA.IC = IB.ID.
Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Cánh diều
Toán - Văn - Anh - KHTN - Lịch sử và Địa lí
Đề bài
Cho tứ giác nội tiếp ABCD có hai đường chéo AC và BD cắt nhau tại I.
a) Hai góc ABD và ACD có bằng nhau hay không? Vì sao?
b) Chứng minh \(\Delta AIB\backsim \Delta IDC\) và IA.IC = IB.ID.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a) Lý thuyết: Trong một đường tròn, hai góc nội tiếp cùng chắn 1 cung thì bằng nhau.
b) Chỉ ra \(\Delta AIB\backsim \Delta IDC\) theo trường hợp g.g.
Lời giải chi tiết
a) Do tứ giác ABCD nội tiếp đường tròn nên \(\widehat {ACD} = \widehat {ABD}\)(cùng chắn cung AD).
b) Xét tam giác AIB và tam giác DIC có:
\(\widehat {AIB} = \widehat {DIC}\) (đối đỉnh)
\(\widehat {ACD} = \widehat {ABD}\)(cmt)
Nên \(\Delta AIB\backsim \Delta IDC\)(g.g)
Suy ra \(\frac{{IA}}{{ID}} = \frac{{IB}}{{IC}}\) hay IA.IC = IB.ID (đpcm).
- Giải bài tập 7 trang 78 SGK Toán 9 tập 2 - Cánh diều
- Giải bài tập 5 trang 78 SGK Toán 9 tập 2 - Cánh diều
- Giải bài tập 4 trang 78 SGK Toán 9 tập 2 - Cánh diều
- Giải bài tập 3 trang 78 SGK Toán 9 tập 2 - Cánh diều
- Giải bài tập 2 trang 78 SGK Toán 9 tập 2 - Cánh diều
>> Xem thêm