Giải bài tập 5.39 trang 113 SGK Toán 9 tập 1 - Kết nối tri thức


Cho tam giác vuông ABC (A vuông). Vẽ hai đường tròn (B; BA) và (C; CA) cắt nhau tại A và A’. Chứng minh rằng: a) BA và BA’ là hai tiếp tuyến cắt nhau của (C; CA). b) CA và CA’ là hai tiếp tuyến cắt nhau của (B; BA).

Đề bài

Cho tam giác vuông ABC (A vuông). Vẽ hai đường tròn (B; BA) và (C; CA) cắt nhau tại A và A’. Chứng minh rằng:

a) BA và BA’ là hai tiếp tuyến cắt nhau của (C; CA).

b) CA và CA’ là hai tiếp tuyến cắt nhau của (B; BA). 

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) Chứng minh \(\Delta {\rm{ABC}} = \Delta {\rm{A'BC}}\) từ đó suy ra \(\widehat {{\rm{BA'C}}} = \widehat {{\rm{BAC}}} = 90^\circ \).

Do đó BA và BA’ là hai tiếp tuyến cắt nhau của (C; CA).

b)  Lần lượt chứng minh CA và CA’ là các tiếp tuyến của (B; BA).

Lời giải chi tiết

a) Xét tam giác ABC và tam giác A’BC có:

BA = BA’

BC chung

CA = CA’

Suy ra: \(\Delta {\rm{ABC}} = \Delta {\rm{A'BC}}\)(c.c.c)

Do đó: \(\widehat {{\rm{BA'C}}} = \widehat {{\rm{BAC}}} = 90^\circ \) (hai góc tương ứng)

Suy ra: \({\rm{CA'}} \bot {\rm{BA'}}\) tại A’ nên BA’ là tiếp tuyến của (C; CA)

Lại có: \({\rm{CA}} \bot {\rm{BA}}\) tại A nên BA là tiếp tuyến của (C; CA)

Vậy BA và BA’ là hai tiếp tuyến cắt nhau của (B; BA).

b) \({\rm{CA'}} \bot {\rm{BA'}}\) tại A’ nên CA’ là tiếp tuyến của (B; BA)

\({\rm{CA}} \bot {\rm{BA}}\) tại A nên CA là tiếp tuyến của (B; BA)

Vậy CA và CA’ là hai tiếp tuyến cắt nhau của (C; CA).


Bình chọn:
4 trên 3 phiếu
  • Giải bài tập 5.40 trang 113 SGK Toán 9 tập 1 - Kết nối tri thức

    Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Một đường thẳng d đi qua A cắt (O) tại E và cắt (O’) tại F (E và F) khác A. Biết điểm A nằm trong đoạn EF. Gọi I và K lần lượt là trung điểm của AE và AF (H.5.46). a) Chứng minh rằng tứ giác OO’KI là một hình thang vuông. b) Chứng minh rằng ({rm{IK}} = frac{1}{2}{rm{EF}}). c) Khi d ở vị trí nào (d vẫn qua A) thì OO’KI là một hình chữ nhật?

  • Giải bài tập 5.38 trang 113 SGK Toán 9 tập 1 - Kết nối tri thức

    Cho điểm B nằm giữa hai điểm A và C, sao cho AB = 2 cm và BC = 1 cm. Vẽ các đường tròn (A; 1,5 cm), (B; 3 cm) và (C; 2 cm). Hãy xác định các cặp đường tròn: a) Cắt nhau; b) Không giao nhau; c) Tiếp xúc với nhau.

  • Giải bài tập 5.37 trang 113 SGK Toán 9 tập 1 - Kết nối tri thức

    Cho AB là một dây bất kì (không phải là đường kính) của đường tròn (O; 4 cm). Gọi C và D lần lượt là các điểm đối xứng với A và B qua tâm O. a) Hai điểm C và D có nằm trên đường tròn (O) không? Vì sao? b) Biết rằng ABCD là một hình vuông. Tính độ dài cung lớn AB và diện tích hình quạt tròn tạo bởi hai bán kính OA và OB.

  • Giải bài tập 5.36 trang 112 SGK Toán 9 tập 1 - Kết nối tri thức

    Cho đường tròn (O) đường kính BC và điểm A (khác B và C). a) Chứng minh rằng nếu A nằm trên (O) thì ABC là một tam giác vuông; ngược lại, nếu ABC là tam giác vuông tại A thì nằm trên (O). b) Giả sử A là một trong hai giao điểm của đường tròn (B; BO) với đường tròn (O). Tính các góc của tam giác ABC. c) Với cùng giả thiết câu b), tính độ dài cung AC và diện tích hình quạt nằm trong (O) giới hạn bởi các bán kính OA và OC, biết rằng BC = 6 cm.

  • Giải bài tập 5.35 trang 112 SGK Toán 9 tập 1 - Kết nối tri thức

    Cho đường tròn (O; R) và hai đường thẳng ({{rm{a}}_1})và ({{rm{a}}_2}.) Gọi ({{rm{d}}_1},{{rm{d}}_2}) lần lượt là khoảng cách từ điểm O đến ({{rm{a}}_1})và ({{rm{a}}_2}.) Biết rằng (O) cắt ({{rm{a}}_1})và tiếp xúc với ({{rm{a}}_2}) (H.5.45). Khi đó: A. ({{rm{d}}_1} < {rm{R}})và ({{rm{d}}_2} = {rm{R}}) B. ({{rm{d}}_1} = {rm{R}})và ({{rm{d}}_2} < {rm{R}}) C. ({{rm{d}}_1} > {rm{R}})và ({{rm{d}}_2} = {rm{R}}) D. ({{rm{d}}_1} < {rm{R}})và ({{rm{

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí