Giải bài tập 5.31 trang 126 SGK Toán 9 tập 1 - Cùng khám phá


Trong Hình 5.70, hai cát tuyến AB và CD của đường tròn cắt nhau tại M. a) Chứng minh rằng $\Delta AMD\backsim \Delta CMB$. b) Tính MB và MC, biết \(MD = 100,MA = 70,AD = 40,BC = 42\).

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Trong Hình 5.70, hai cát tuyến AB và CD của đường tròn cắt nhau tại M.

a) Chứng minh rằng $\Delta AMD\backsim \Delta CMB$.

b) Tính MB và MC, biết \(MD = 100,MA = 70,AD = 40,BC = 42\).

Phương pháp giải - Xem chi tiết

a) + Vì góc MDA và góc MBC là góc nội tiếp cùng chắn cung AC nên \(\widehat {MDA} = \widehat {MBC}\).

+ Chứng minh $\Delta AMD\backsim \Delta CMB\left( g.g \right)$.

b) + Vì $\Delta AMD\backsim \Delta CMB$ nên \(\frac{{MA}}{{MC}} = \frac{{MD}}{{MB}} = \frac{{AD}}{{CB}}\), suy ra \(\frac{{70}}{{MC}} = \frac{{100}}{{MB}} = \frac{{40}}{{42}} = \frac{{20}}{{21}}\), từ đó tính MC, MB.

Lời giải chi tiết

a) Vì góc MDA và góc MBC là góc nội tiếp cùng chắn cung AC nên \(\widehat {MDA} = \widehat {MBC}\).

Tam giác AMD và tam giác CMB có:

\(\widehat {MDA} = \widehat {MBC}\),

góc M chung.

Do đó, $\Delta AMD\backsim \Delta CMB\left( g.g \right)$.

b) Vì $\Delta AMD\backsim \Delta CMB$ nên \(\frac{{MA}}{{MC}} = \frac{{MD}}{{MB}} = \frac{{AD}}{{CB}}\), suy ra \(\frac{{70}}{{MC}} = \frac{{100}}{{MB}} = \frac{{40}}{{42}} = \frac{{20}}{{21}}\).

Do đó, \(MC = 70:\frac{{20}}{{21}} = \frac{{147}}{2}\), \(MB = 100:\frac{{20}}{{21}} = 105\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí