Giải bài tập 4.24 trang 27 SGK Toán 12 tập 2 - Kết nối tri thức>
Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^2} - 2x,y = - {x^2} + 4x\) và hai đường thẳng \(x = 0,x = 3\) là A. \( - 9\). B. 9. C. \(\frac{{16}}{3}\). D. \(\frac{{20}}{3}\).
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Đề bài
Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^2} - 2x,y = - {x^2} + 4x\) và hai đường thẳng \(x = 0,x = 3\) là
A. \( - 9\).
B. 9.
C. \(\frac{{16}}{3}\).
D. \(\frac{{20}}{3}\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về diện tích hình phẳng giới hạn bởi hai đồ thị hàm số và đường thẳng \(x = a,x = b\) để tính: Diện tích S của hình phẳng giới hạn đồ thị của hai hàm số f(x), g(x) liên tục trên đoạn [a; b] và hai đường thẳng \(x = a,x = b\), được tính bằng công thức \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).
Lời giải chi tiết
Diện tích hình phẳng cần tính là:
\(\int\limits_0^3 {\left| {{x^2} - 2x + {x^2} - 4x} \right|dx} = \int\limits_0^3 {\left| {2{x^2} - 6x} \right|dx} = \int\limits_0^3 {\left( { - 2{x^2} + 6x} \right)dx = \left( { - \frac{{2{x^3}}}{3} + 3{x^2}} \right)} \left| \begin{array}{l}3\\0\end{array} \right.\)
\( = - \frac{{{{2.3}^3}}}{3} + {3.3^2} = 9\)
Chọn B
- Giải bài tập 4.25 trang 27 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 4.26 trang 28 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 4.27 trang 28 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 4.28 trang 28 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 4.29 trang 28 SGK Toán 12 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức