Giải bài tập 3.21 trang 59 SGK Toán 9 tập 1 - Kết nối tri thức>
Rút gọn các biểu thức sau: a) (2sqrt {frac{2}{3}} - 4sqrt {frac{3}{2}} ;) b) (frac{{5sqrt {48} - 3sqrt {27} + 2sqrt {12} }}{{sqrt 3 }};) c) (frac{1}{{3 + 2sqrt 2 }} + frac{{4sqrt 2 - 4}}{{2 - sqrt 2 }}.)
Tổng hợp đề thi giữa kì 1 lớp 9 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Khoa học tự nhiên
Đề bài
Rút gọn các biểu thức sau:
a) \(2\sqrt {\frac{2}{3}} - 4\sqrt {\frac{3}{2}} ;\)
b) \(\frac{{5\sqrt {48} - 3\sqrt {27} + 2\sqrt {12} }}{{\sqrt 3 }};\)
c) \(\frac{1}{{3 + 2\sqrt 2 }} + \frac{{4\sqrt 2 - 4}}{{2 - \sqrt 2 }}.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng trục căn thức để khử mẫu, đưa thừa số ra ngoài dấu căn và đưa vào trong dấu căn, kết hợp các phương pháp để rút gọn biểu thức
Lời giải chi tiết
a) \(2\sqrt {\frac{2}{3}} - 4\sqrt {\frac{3}{2}} \)\( = 2\frac{{\sqrt 2 }}{{\sqrt 3 }} - 4\frac{{\sqrt 3 }}{{\sqrt 2 }}\)\( = 2.\frac{{\sqrt 6 }}{3} - 4.\frac{{\sqrt 6 }}{2}\)\( = \sqrt 6 \left( {\frac{2}{3} - 2} \right)\)\( = \frac{{ - 4\sqrt 6 }}{3}.\)
b) \(\frac{{5\sqrt {48} - 3\sqrt {27} + 2\sqrt {12} }}{{\sqrt 3 }}\)\( = \frac{{5\sqrt {16.3} - 3\sqrt {9.3} + 2\sqrt {4.3} }}{{\sqrt 3 }}\)\( = \frac{{\sqrt 3 .\left( {5\sqrt {16} - 3\sqrt 9 + 2\sqrt 4 } \right)}}{{\sqrt 3 }}\)\( = 5.4 - 3.3 + 2.2\)\( = 20 - 9 + 4\)\( = 15\)
c) \(\frac{1}{{3 + 2\sqrt 2 }} + \frac{{4\sqrt 2 - 4}}{{2 - \sqrt 2 }}\)\( = \frac{{3 - 2\sqrt 2 }}{{\left( {3 + 2\sqrt 2 } \right)\left( {3 - 2\sqrt 2 } \right)}} + \frac{{4\left( {\sqrt 2 - 1} \right)}}{{\sqrt 2 \left( {\sqrt 2 - 1} \right)}}\)\( = \frac{{3 - 2\sqrt 2 }}{{9 - 8}} + \frac{4}{{\sqrt 2 }}\)\( = 3 - 2\sqrt 2 + \frac{{4\sqrt 2 }}{2}\)
\( = 3 - 2\sqrt 2 + 2\sqrt 2 \)\( = 3\)
- Giải bài tập 3.22 trang 59 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải bài tập 3.20 trang 59 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải bài tập 3.19 trang 59 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải bài tập 3.18 trang 59 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải bài tập 3.17 trang 59 SGK Toán 9 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục