Giải bài tập 3 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo


Phương trình nào dưới đây là phương trình mặt phẳng đi qua điểm \(M\left( {1;2; - 3} \right)\) và có vectơ pháp tuyến \(\vec n = \left( {1; - 2;3} \right)\)? A. \(x - 2y + 3z - 12 = 0\) B. \(x - 2y - 3z + 6 = 0\) C. \(x - 2y + 3z + 12 = 0\) D. \(x - 2y - 3z - 6 = 0\)

Đề bài

Phương trình nào dưới đây là phương trình mặt phẳng đi qua điểm \(M\left( {1;2; - 3} \right)\) và có vectơ pháp tuyến \(\vec n = \left( {1; - 2;3} \right)\)?

A. \(x - 2y + 3z - 12 = 0\)

B. \(x - 2y - 3z + 6 = 0\)

C. \(x - 2y + 3z + 12 = 0\)

D. \(x - 2y - 3z - 6 = 0\)

Phương pháp giải - Xem chi tiết

Phương trình mặt phẳng đi qua \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ pháp tuyến \(\vec n = \left( {a;b;c} \right)\) là \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0\).

Lời giải chi tiết

Phương trình mặt phẳng đi qua điểm \(M\left( {1;2; - 3} \right)\) và có vectơ pháp tuyến \(\vec n = \left( {1; - 2;3} \right)\) là \(1\left( {x - 1} \right) - 2\left( {y - 2} \right) + 3\left( {z + 3} \right) = 0\), hay \(x - 2y + 3z + 12 = 0\).

Vậy đáp án đúng là C.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài tập 4 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Cho mặt phẳng \(\left( P \right):3x + 4y + 2z + 4 = 0\) và điểm \(A\left( {1; - 2;3} \right)\). Khoảng cách từ \(A\) đến \(\left( P \right)\) bằng A. \(\frac{5}{{\sqrt {29} }}\) B. \(\frac{5}{{29}}\) C. \(\frac{{\sqrt 5 }}{3}\) D. \(\frac{5}{9}\)

  • Giải bài tập 5 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Cho ba mặt phẳng \(\left( \alpha \right):x + y + 2z + 1 = 0\), \(\left( \beta \right):x + y - z + 2 = 0\) và \(\left( \gamma \right):x - y + 5 = 0\). Trong các mệnh đề sau, mệnh đề nào sai? A. \(\left( \alpha \right) \bot \left( \beta \right)\) B. \(\left( \gamma \right) \bot \left( \beta \right)\) C. \(\left( \alpha \right)\parallel \left( \beta \right)\) D. \(\left( \alpha \right) \bot \left( \gamma \right)\)

  • Giải bài tập 6 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Cho đường thẳng \(d:\frac{{x - 2}}{{ - 1}} = \frac{{y - 1}}{2} = \frac{{z + 3}}{1}\). Vectơ nào sau đây là một vectơ chỉ phương của \(d\)? A. \(\overrightarrow {{u_1}} = \left( {2;1; - 3} \right)\) B. \(\overrightarrow {{u_2}} = \left( { - 2; - 1;3} \right)\) C. \(\overrightarrow {{u_3}} = \left( { - 1;2;1} \right)\) D. \(\overrightarrow {{u_4}} = \left( { - 1;2; - 1} \right)\)

  • Giải bài tập 7 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Phương trình nào dưới đây là phương trình chính tắc của đường thẳng \(d:\left\{ \begin{array}{l}x = 1 + 2t\\y = 3t\\z = - 2 + t\end{array} \right.\)? A. \(\frac{{x + 1}}{2} = \frac{y}{3} = \frac{{z - 2}}{1}\) B. \(\frac{{x - 1}}{2} = \frac{y}{3} = \frac{{z + 2}}{1}\) C. \(\frac{{x + 1}}{2} = \frac{y}{3} = \frac{{z - 2}}{{ - 2}}\) D. \(\frac{{x - 1}}{1} = \frac{y}{3} = \frac{{z + 2}}{{ - 2}}\)

  • Giải bài tập 8 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Cho đường thẳng \(d:\left\{ \begin{array}{l}x = - 1 + 2t\\y = - t\\z = - 2 - t\end{array} \right.\). Trong các đường thẳng sau, đường thẳng nào vuông góc với \(d\)? A. \({d_1}:\left\{ \begin{array}{l}x = 3t'\\y = 1 + t'\\z = 5t'\end{array} \right.\) B. \({d_2}:\left\{ \begin{array}{l}x = 2\\y = 2 + t'\\z = 1 + t'\end{array} \right.\) C. \({d_3}:\frac{{x - 2}}{3} = \frac{y}{2} = \frac{{z - 1}}{{ - 5}}\) D. \({d_4}:\frac{{x + 2}}{2} = \frac{y}{{ - 1}} = \frac{{z + 1}}{2}\)

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí