Giải bài tập 2.2 trang 30 SGK Toán 9 tập 1 - Kết nối tri thức>
Giải các phương trình sau: a) (xleft( {x - 2} right) = 0;) b) (left( {2x + 1} right)left( {3x - 2} right) = 0.)
Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - KHTN - Lịch sử và Địa lí
Đề bài
Giải các phương trình sau:
a) \(\left( {{x^2} - 4} \right) + x\left( {x - 2} \right) = 0;\)
b) \({\left( {2x + 1} \right)^2} - 9{x^2} = 0.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Cần đưa phương trình đã cho về dạng \(A\left( x \right).B\left( x \right) = 0\) thì \(A\left( x \right) = 0\) hoặc \(B\left( x \right) = 0\)
Bằng cách sử dụng phương pháp phân tích đa thức thành nhân tử thông qua đặt nhân tử chung hoặc sử dụng hằng đẳng thức đáng nhớ
Lời giải chi tiết
a) \(\left( {{x^2} - 4} \right) + x\left( {x - 2} \right) = 0;\)
\(\begin{array}{l}\left( {{x^2} - 4} \right) + x\left( {x - 2} \right) = 0\\\left( {x - 2} \right)\left( {x + 2} \right) + x\left( {x - 2} \right) = 0\\\left( {x - 2} \right)\left( {x + 2 + x} \right) = 0\end{array}\)
\(\begin{array}{l}\left( {x - 2} \right)\left( {2x + 2} \right) = 0\\TH1:x - 2 = 0\\x = 2\\TH2:2x + 2 = 0\\2x = - 2\\x = - 1\end{array}\)
Vậy \(x \in \left\{ { - 1;2} \right\}.\)
b) \({\left( {2x + 1} \right)^2} - 9{x^2} = 0.\)
\(\begin{array}{l}{\left( {2x + 1} \right)^2} - {\left( {3x} \right)^2} = 0\\\left( {2x + 1 - 3x} \right)\left( {2x + 1 + 3x} \right) = 0\\(1-x).\left( {5x + 1} \right) = 0\end{array}\)
\(TH1:1-x = 0\\x = 1\\TH2:5x + 1 = 0\\5x =- 1\\x = -\frac{1}{5}\)
Vậy \(x \in \left\{ { 1;-\frac{1}{5}} \right\}.\)
- Giải bài tập 2.3 trang 30 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải bài tập 2.4 trang 30 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải bài tập 2.5 trang 30 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải bài tập 2.1 trang 30 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải mục 2 trang 28, 29 SGK Toán 9 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục