Giải bài tập 2 trang 64 SGK Toán 9 tập 2 - Cánh diều>
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai? a) Nếu phương trình (a{x^2} + bx + c = 0(a ne 0)) có (a + b + c = 0) thì phương trình có một nghiệm là ({x_1} = 1) và nghiệm còn lại là ({x_2} = frac{c}{a}.) b) Nếu phương trình (a{x^2} + bx + c = 0(a ne 0)) có (a - b + c = 0) thì phương trình có một nghiệm là ({x_1} = - 1) và nghiệm còn lại là ({x_2} = frac{c}{a}.) c) Nếu phương trình (a{x^2} + bx + c = 0(a ne 0)) có (a - b + c = 0) thì phương trình có
Đề bài
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(a + b + c = 0\) thì phương trình có một nghiệm là \({x_1} = 1\) và nghiệm còn lại là \({x_2} = \frac{c}{a}.\)
b) Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(a - b + c = 0\) thì phương trình có một nghiệm là \({x_1} = - 1\) và nghiệm còn lại là \({x_2} = \frac{c}{a}.\)
c) Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(a - b + c = 0\) thì phương trình có một nghiệm là \({x_1} = - 1\) và nghiệm còn lại là \({x_2} = - \frac{c}{a}.\)
d) Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(a + b + c = 0\) thì phương trình có một nghiệm là \({x_1} = 1\) và nghiệm còn lại là \({x_2} = - \frac{c}{a}.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Nhớ lại cách nhẩm nghiệm trong trường hợp đặc biệt của phương trình bậc hai.
Lời giải chi tiết
Chọn đáp án a) và c).





Danh sách bình luận