Giải bài tập 1.42 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức>
Tìm các tiệm cận của mỗi đồ thị hàm số sau: a) \(y = \frac{{3x - 2}}{{x + 1}}\); b) \(y = \frac{{{x^2} + 2x - 1}}{{2x - 1}}\).
Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Tìm các tiệm cận của mỗi đồ thị hàm số sau:
a) \(y = \frac{{3x - 2}}{{x + 1}}\);
b) \(y = \frac{{{x^2} + 2x - 1}}{{2x - 1}}\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về khái niệm tiệm cận ngang của đồ thị hàm số để tìm tiệm cận ngang: Đường thẳng \(y = {y_0}\) gọi là đường tiệm cận ngang (gọi tắt là tiệm cận ngang) của đồ thị hàm số \(y = f\left( x \right)\) nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\).
Sử dụng kiến thức về khái niệm tiệm cận đứng của đồ thị hàm số để tìm tiệm cận đứng: Đường thẳng \(x = {x_0}\) gọi là đường tiệm cận đứng (gọi tắt là tiệm cận đứng) của đồ thị hàm số \(y = f\left( x \right)\) nếu ít nhất một trong các điều kiện sau được thỏa mãn: \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty \)
Sử dụng kiến thức về khái niệm đường tiệm cận xiên để tìm tiệm cận xiên: Đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) gọi là đường tiệm cận xiên (gọi tắt là tiệm cận xiên) của đồ thị hàm số \(y = f\left( x \right)\) nếu \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - \left( {ax + b} \right)} \right] = 0\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) - \left( {ax + b} \right)} \right] = 0\).
Lời giải chi tiết
a) Ta có: \(\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{3x - 2}}{{x + 1}} = - \infty \); \(\mathop {\lim }\limits_{x \to - {1^ - }} y = \mathop {\lim }\limits_{x \to - {1^ - }} \frac{{3x - 2}}{{x + 1}} = + \infty \)
Vậy tiệm cận đứng của đồ thị hàm số \(y = \frac{{3x - 2}}{{x + 1}}\) là đường thẳng \(x = - 1\)
Ta có: \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{3x - 2}}{{x + 1}} = 3\); \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{3x - 2}}{{x + 1}} = 3\) nên tiệm cận ngang của đồ thị hàm số \(y = \frac{{3x - 2}}{{x + 1}}\) đường thẳng \(y = 3\).
b) Ta có: \(\mathop {\lim }\limits_{x \to {{\left( {\frac{1}{2}} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( {\frac{1}{2}} \right)}^ + }} \frac{{{x^2} + 2x - 1}}{{2x - 1}} = + \infty \); \(\mathop {\lim }\limits_{x \to {{\left( {\frac{1}{2}} \right)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( {\frac{1}{2}} \right)}^ - }} \frac{{{x^2} + 2x - 1}}{{2x - 1}} = - \infty \)
Vậy tiệm cận đứng của đồ thị hàm số \(y = \frac{{{x^2} + 2x - 1}}{{2x - 1}}\) là đường thẳng \(x = \frac{1}{2}\).
Ta có: \(y = \frac{{{x^2} + 2x - 1}}{{2x - 1}} = \frac{x}{2} + \frac{5}{4} + \frac{1}{{4\left( {2x - 1} \right)}}\)
Do đó, \(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {\frac{x}{2} + \frac{5}{4}} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{4\left( {2x - 1} \right)}} = 0\), \(\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {\frac{x}{2} + \frac{5}{4}} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \frac{1}{{4\left( {2x - 1} \right)}} = 0\)
Vậy tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} + 2x - 1}}{{2x - 1}}\) là đường thẳng \(y = \frac{x}{2} + \frac{5}{4}\)
Ta có: \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} + 2x - 1}}{{2x - 1}} = - \infty \); \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} + 2x - 1}}{{2x - 1}} = + \infty \) nên đồ thị hàm số \(y = \frac{{{x^2} + 2x - 1}}{{2x - 1}}\) không có tiệm cận ngang.
- Giải bài tập 1.43 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 1.44 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 1.45 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 1.46 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 1.41 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức