Giải bài 9.19 trang 54 sách bài tập toán 9 - Kết nối tri thức tập 2>
Cho tam giác ABC nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I). Tia AI cắt (O) tại X (khác A). Chứng minh rằng X là tâm của đường tròn ngoại tiếp tam giác BIC.
Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - KHTN - Lịch sử và Địa lí
Đề bài
Cho tam giác ABC nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I). Tia AI cắt (O) tại X (khác A). Chứng minh rằng X là tâm của đường tròn ngoại tiếp tam giác BIC.
Phương pháp giải - Xem chi tiết
+ Chứng minh \(\widehat {BIX} = \frac{{\widehat {BAC}}}{2} + \frac{{\widehat {ABC}}}{2}\), \(\widehat {IBX} = \frac{{\widehat {ABC}}}{2} + \frac{{\widehat {CAB}}}{2}\) nên tam giác BIX cân tại X nên \(XI = XB\).
+ Chứng minh tương tự ta có: \(XI = IC\).
+ Suy ra, X là tâm của đường tròn ngoại tiếp tam giác BIC.
Lời giải chi tiết
Vì I là giao điểm của các đường phân giác của tam giác ABC nên \(\widehat {IAB} = \frac{{\widehat {BAC}}}{2};\widehat {IBA} = \widehat {IBC} = \frac{{\widehat {ABC}}}{2}\).
Ta có:
\(\widehat {BIX} = {180^o} - \widehat {BIA} = \widehat {IAB} + \widehat {IBA} \\= \frac{{\widehat {BAC}}}{2} + \frac{{\widehat {ABC}}}{2}\;(1)\)
Vì góc CBX và góc CAX là các góc nội tiếp của (O) cùng chắn cung nhỏ CX nên \(\widehat {CBX} = \widehat {CAX}\).
Ta có:
\(\widehat {IBX} = \widehat {IBC} + \widehat {CBX} = \frac{{\widehat {ABC}}}{2} + \widehat {CAX} \\= \frac{{\widehat {ABC}}}{2} + \frac{{\widehat {CAB}}}{2}\;(2)\)
Từ (1) và (2) ta có: \(\widehat {BIX} = \widehat {IBX}\) nên tam giác BIX cân tại X. Do đó, \(XI = XB\).
Chứng minh tương tự ta có: \(XI = IC\). Vậy X là tâm của đường tròn ngoại tiếp tam giác BIC.
- Giải bài 9.20 trang 54 sách bài tập toán 9 - Kết nối tri thức tập 2
- Giải bài 9.18 trang 54 sách bài tập toán 9 - Kết nối tri thức tập 2
- Giải bài 9.17 trang 53 sách bài tập toán 9 - Kết nối tri thức tập 2
- Giải bài 9.16 trang 53 sách bài tập toán 9 - Kết nối tri thức tập 2
- Giải bài 9.15 trang 53 sách bài tập toán 9 - Kết nối tri thức tập 2
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 18 trang 74 sách bài tập toán 9 - Kết nối tri thức tập 2
- Giải bài 17 trang 74 sách bài tập toán 9 - Kết nối tri thức tập 2
- Giải bài 16 trang 74 sách bài tập toán 9 - Kết nối tri thức tập 2
- Giải bài 15 trang 74 sách bài tập toán 9 - Kết nối tri thức tập 2
- Giải bài 14 trang 73 sách bài tập toán 9 - Kết nối tri thức tập 2
- Giải bài 18 trang 74 sách bài tập toán 9 - Kết nối tri thức tập 2
- Giải bài 17 trang 74 sách bài tập toán 9 - Kết nối tri thức tập 2
- Giải bài 16 trang 74 sách bài tập toán 9 - Kết nối tri thức tập 2
- Giải bài 15 trang 74 sách bài tập toán 9 - Kết nối tri thức tập 2
- Giải bài 14 trang 73 sách bài tập toán 9 - Kết nối tri thức tập 2