Giải bài 7 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2


Cho hàm số \(f\left( x \right) = {x^3} + 2{x^2} - mx - 5\). Tìm m để a) \(f'\left( x \right) = 0\) có nghiệm kép; b) \(f'\left( x \right) \ge 0\) với mọi x.

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Cho hàm số \(f\left( x \right) = {x^3} + 2{x^2} - mx - 5\). Tìm m để

a) \(f'\left( x \right) = 0\) có nghiệm kép;

b) \(f'\left( x \right) \ge 0\) với mọi x.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về các quy tắc tính đạo hàm để tính: \(\left( {u \pm v} \right)' = u' \pm v',\left( {{x^\alpha }} \right)' = \alpha .{x^{\alpha  - 1}}\left( {x > 0} \right),c' = 0\) với c là hằng số.

Lời giải chi tiết

Ta có: \(f'\left( x \right) = {\left( {{x^3} + 2{x^2} - mx - 5} \right)'} = 3{x^2} + 4x - m\)

a) \(f'\left( x \right) = 3{x^2} + 4x - m = 0\) có nghiệm kép khi \(\Delta ' = {2^2} + 3m = 0 \Leftrightarrow m = \frac{{ - 4}}{3}\)

b) Để \(f'\left( x \right) \ge 0\) với mọi x thì \(3{x^2} + 4x - m \ge 0\) với mọi x


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí