Giải bài 3 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2


Vị trí chuyển động của một vật trên đường thẳng được biểu diễn bởi công thức \(s\left( t \right) = 3{t^3} + 5t + 2\), trong đó t là thời gian tính bằng giây và s tính bằng mét. Tính vận tốc và gia tốc của vật đó khi \(t = 1\).

Đề bài

Vị trí chuyển động của một vật trên đường thẳng được biểu diễn bởi công thức \(s\left( t \right) = 3{t^3} + 5t + 2\), trong đó t là thời gian tính bằng giây và s tính bằng mét. Tính vận tốc và gia tốc của vật đó khi \(t = 1\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về ý nghĩa của đạo hàm và đạo hàm cấp hai:

+ Nếu hàm số \(s = f\left( t \right)\) biểu thị quãng đường đi chuyển của vật theo thời gian t thì \(f'\left( {{t_0}} \right)\) biểu thị tốc độ tức thời của chuyển động tại thời điểm \({t_0}\).

+ Đạo hàm cấp hai \(f''\left( t \right)\) là gia tốc tức thời tại thời điểm t của vật chuyển động có phương trình \(s = f\left( t \right)\). 

Lời giải chi tiết

Ta có: \(s'\left( t \right) = 9{t^2} + 5,s''\left( t \right) = 18t\)

Vận tốc của chuyển động tại thời điểm \(t = 1\) là: \(s'\left( 1 \right) = {9.1^2} + 5 = 14\left( {m/s} \right)\)

Gia tốc của chuyển động tại thời điểm \(t = 1\) là: \(s''\left( 1 \right) = 18.1 = 18\left( {m/{s^2}} \right)\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí