Giải bài 5.41 trang 37 sách bài tập toán 12 - Kết nối tri thức


Trong không gian Oxyz, cho đường thẳng (Delta :left{ begin{array}{l}x = 1 + t\y = 2t\z = - 1 - 2tend{array} right.) và mặt phẳng (left( P right):2x + y + z + 5 = 0). a) Tìm tọa độ giao điểm I của đường thẳng (Delta ) và mặt phẳng (P). b) Viết phương trình đường thẳng (Delta ') nằm trên mặt phẳng (P) đồng thời cắt (Delta ) và vuông góc với (Delta ). c) Tính góc giữa đường thẳng (Delta ) và mặt phẳng (P).

Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Trong không gian Oxyz, cho đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 1 + t\\y = 2t\\z =  - 1 - 2t\end{array} \right.\) và mặt phẳng \(\left( P \right):2x + y + z + 5 = 0\).

a) Tìm tọa độ giao điểm I của đường thẳng \(\Delta \) và mặt phẳng (P).

b) Viết phương trình đường thẳng \(\Delta '\) nằm trên mặt phẳng (P) đồng thời cắt \(\Delta \) và vuông góc với \(\Delta \).

c) Tính góc giữa đường thẳng \(\Delta \) và mặt phẳng (P).

Phương pháp giải - Xem chi tiết

Ý a: Biểu diễn I theo tham số t và thay tọa độ của nó vào phương trình mặt phẳng (P) để tìm t.

Ý b: Đường thẳng cần tìm đi qua I và nhận tích có hướng của vectơ chỉ phương của \(\Delta \) với vectơ pháp tuyến của (P) làm vectơ chỉ phương.

Ý c: Áp dụng công thức tính sin của góc cần tìm.

Lời giải chi tiết

a) Ta có I thuộc \(\Delta \) nên I\(\left( {1 + t;2t; - 1 - 2t} \right)\).

Mặt khác I thuộc (P) suy ra \(2\left( {1 + t} \right) + 2t - 1 - 2t + 5 = 0 \Leftrightarrow 2t + 6 = 0 \Leftrightarrow t =  - 3\).

Do đó, I\(\left( { - 2; - 6;5} \right)\).

b) Vectơ pháp tuyến của (P) là \(\overrightarrow n  = \left( {2;1;1} \right)\). Vectơ chỉ phương của \(\Delta \) là \(\overrightarrow u  = \left( {1;2; - 2} \right)\).

Đường thẳng \(\Delta '\) nằm trên mặt phẳng (P) vuông góc với \(\Delta \) nên \(\Delta '\) có một vectơ chỉ phương là \(\overrightarrow {u'}  = \left[ {\overrightarrow u ,\overrightarrow n } \right] = \left( {4; - 5; - 3} \right)\).

Mặt khác có đường thẳng \(\Delta '\) nằm trên mặt phẳng (P) đồng thời cắt \(\Delta \) nên I thuộc \(\Delta '\).

Phương trình đường thẳng \(\Delta '\) là \(\left\{ \begin{array}{l}x =  - 2 + 4t\\y =  - 6 - 5t\\z = 5 - 3t\end{array} \right.\)

c) Ta có \(\sin \left( {\Delta ,\left( P \right)} \right) = \frac{{\left| {\overrightarrow u  \cdot \overrightarrow n } \right|}}{{\left| {\overrightarrow u } \right| \cdot \left| {\overrightarrow n } \right|}} = \frac{{\left| {2 + 2 - 1} \right|}}{{\sqrt 9  \cdot \sqrt 6 }} = \frac{2}{{3\sqrt 6 }}\) suy ra \(\left( {\Delta ,\left( P \right)} \right) \approx {15,8^ \circ }\).


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 5.42 trang 38 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian Oxyz, cho hai đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 3 + 2t\\y = - 2 + t\\z = 1 + 3t\end{array} \right.\) và \(\Delta ':\frac{{x + 2}}{3} = \frac{{y - 3}}{2} = \frac{{z - 1}}{{ - 2}}\). a) Chứng minh rằng hai đường thẳng \(\Delta \) và \(\Delta '\) chéo nhau. b) Viết phương trình mặt phẳng (P) chứa \(\Delta \) và song song với đường thẳng \(\Delta '\).

  • Giải bài 5.43 trang 38 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian Oxyz, cho mặt cầu (left( S right):{left( {x - 2} right)^2} + {left( {y + 1} right)^2} + {left( {z - 3} right)^2} = 9) và điểm (Aleft( {2; - 1;1} right)). a) Tìm tâm I và bán kính R của mặt cầu (S). b) Chứng minh rằng điểm A nằm trong mặt cầu (S). c) Viết phương trình mặt phẳng (P) đi qua điểm A sao cho khoảng cách từ tâm I của mặt cầu (S) đến mặt phẳng (P) là lớn nhất.

  • Giải bài 5.44 trang 38 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian Oxyz, phương trình nào trong các phương trình sau là phương trình của một mặt cầu? Xác định tâm và bán kính của mặt cầu đó. a) \({x^2} + {y^2} + {z^2} + 6x - 8z + 5 = 0\). b) \({x^2} + {y^2} + {z^2} - 4x + 6z + 17 = 0\). c) \(2{x^2} + 2{y^2} + 2{z^2} - 5 = 0\).

  • Giải bài 5.45 trang 38 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian Oxyz, cho hai mặt phẳng \(\left( P \right):2x + 2y - z + 8 = 0\) và \(\left( Q \right):2x + 2y - z + 2 = 0\). a) Chứng minh rằng \(\left( P \right)\parallel \left( Q \right)\). b) Tính khoảng cách giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\).

  • Giải bài 5.46 trang 38 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian Oxyz, cho điểm \(P\left( {2;3;5} \right)\). Gọi A, B, C lần lượt là hình chiếu vuông góc của điểm P trên các trục Ox, Oy, Oz. Viết phương trình mặt phẳng (ABC).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí