Giải bài 5.31 trang 36 sách bài tập toán 12 - Kết nối tri thức


Trong không gian Oxyz, côsin của góc giữa hai đường thẳng (Delta :left{ begin{array}{l}x = 1 + 2t\y = - 1 + t\z = - 2 + tend{array} right.) và (Delta ':frac{{x + 2}}{1} = frac{{y + 3}}{2} = frac{{z - 1}}{{ - 5}}) bằng A. (frac{{sqrt 5 }}{{30}}). B. (frac{{ - sqrt 5 }}{{30}}). C. (frac{{3sqrt 5 }}{{10}}). D. (frac{{ - 3sqrt 5 }}{{10}}).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Trong không gian Oxyz, côsin của góc giữa hai đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 1 + 2t\\y =  - 1 + t\\z =  - 2 + t\end{array} \right.\) và \(\Delta ':\frac{{x + 2}}{1} = \frac{{y + 3}}{2} = \frac{{z - 1}}{{ - 5}}\) bằng

A. \(\frac{{\sqrt 5 }}{{30}}\).

B. \(\frac{{ - \sqrt 5 }}{{30}}\).

C. \(\frac{{3\sqrt 5 }}{{10}}\).

D. \(\frac{{ - 3\sqrt 5 }}{{10}}\).

Phương pháp giải - Xem chi tiết

Xác định vectơ chỉ phương của hai đường thẳng sau đó tính cosin góc tạo bởi hai đường thẳng.

Lời giải chi tiết

Vectơ chỉ phương của \(\Delta \) và \(\Delta '\) lần lượt là \(\overrightarrow u  = \left( {2;1;1} \right)\) và \(\overrightarrow {u'}  = \left( {1;2; - 5} \right)\).

Ta có \(\cos \left( {\Delta ,\Delta '} \right) = \frac{{\left| {\overrightarrow u  \cdot \overrightarrow {u'} } \right|}}{{\left| {\overrightarrow u } \right| \cdot \left| {\overrightarrow {u'} } \right|}} = \frac{{\left| {2 + 2 - 5} \right|}}{{\sqrt {4 + 1 + 1}  \cdot \sqrt {1 + 4 + 25} }} = \frac{1}{{6\sqrt 5 }} = \frac{{\sqrt 5 }}{{30}}\).

Vậy ta chọn đáp án A.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 5.32 trang 36 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian Oxyz, góc giữa đường thẳng (Delta :frac{{x + 3}}{1} = frac{{y + 1}}{{sqrt 2 }} = frac{{z + 2}}{1}) và mặt phẳng (Oxz) bằng A. ({45^ circ }). B. ({30^ circ }). C. ({60^ circ }). D. ({90^ circ }).

  • Giải bài 5.33 trang 36 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian Oxyz, phương trình mặt cầu (S) có tâm (Ileft( {1;2; - 1} right)) và (S) đi qua (Aleft( { - 1;1;0} right)) là A. ({left( {x - 1} right)^2} + {left( {y - 2} right)^2} + {left( {z + 1} right)^2} = sqrt 6 ). B. ({left( {x + 1} right)^2} + {left( {y + 2} right)^2} + {left( {z - 1} right)^2} = 6). C. ({left( {x - 1} right)^2} + {left( {y - 2} right)^2} + {left( {z + 1} right)^2} = 6). D. ({left( {x + 1} right)^2} + {left( {y - 1} righ

  • Giải bài 5.34 trang 36 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian Oxyz, phương trình ({x^2} + {y^2} + {z^2} - 2x + 4y + 1 = 0) là phương trình mặt cầu có tâm I và bán kính R lần lượt là A. (Ileft( { - 1;2;0} right);R = 2). B. (Ileft( {1; - 2;0} right);R = 2). C. (Ileft( { - 1;2;0} right);R = 4). D. (Ileft( {1; - 2;0} right);R = 4).

  • Giải bài 5.35 trang 36 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian Oxyz, một vectơ pháp tuyến của mặt phẳng chứa đường thẳng (Delta :left{ begin{array}{l}x = 1 + t\y = - 2 + 2t\z = 3 - tend{array} right.) và đi qua điểm (Aleft( {2; - 1;1} right)) là A. (overrightarrow {{n_1}} = left( {3; - 1;1} right)). B. (overrightarrow {{n_2}} = left( {3;1; - 1} right)). C. (overrightarrow {{n_3}} = left( {1; - 1;3} right)). D. (overrightarrow {{n_4}} = left( { - 1;3;1} right)).

  • Giải bài 5.36 trang 37 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian Oxyz, khoảng cách từ điểm (Aleft( { - 2;1;0} right)) đến mặt phẳng (left( P right):2x - 2y + z - 3 = 0) bằng A. 2. B. 6. C. 3. D. 9.

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí