Giải bài 5.1 trang 77 sách bài tập toán 11 - Kết nối tri thức với cuộc sống


Tính các giới hạn sau:

Đề bài

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{n \to  + \infty } \frac{{{n^2} + 1}}{{2{n^2} + n + 2}};\)         

b) \(\mathop {\lim }\limits_{n \to  + \infty } \frac{{{2^n} + 3}}{{1 + {3^n}}}.\)

Phương pháp giải - Xem chi tiết

Để tính giới hạn của dãy số dạng phân thức, ta chia cả tử thức và mẫu thức cho lũy thừa cao nhất của n, rồi áp dụng các quy tắc tính giới hạn.

Lời giải chi tiết

a) \(\mathop {\lim }\limits_{n \to  + \infty } \frac{{{n^2} + 1}}{{2{n^2} + n + 2}} = \mathop {\lim }\limits_{n \to  + \infty } \frac{{1 + \frac{1}{{{n^2}}}}}{{2 + \frac{1}{n} + \frac{2}{{{n^2}}}}} = \frac{1}{2}\)          

b) \(\mathop {\lim }\limits_{n \to  + \infty } \frac{{{2^n} + 3}}{{1 + {3^n}}} = \mathop {\lim }\limits_{n \to  + \infty } \frac{{{{\left( {\frac{2}{3}} \right)}^n} + {{\left( {\frac{1}{3}} \right)}^{n - 1}}}}{{{{\left( {\frac{1}{3}} \right)}^n} + 1}} = 0\)


Bình chọn:
3.5 trên 4 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí