Giải bài 5 trang 55 sách bài tập toán 12 - Chân trời sáng tạo>
Tính góc \(\alpha \) trong mỗi trường hợp sau: a) \(\alpha \) là góc giữa hai vectơ \(\overrightarrow a = \left( {1;1; - 1} \right)\) và \(\overrightarrow b = \left( {5;2;7} \right)\); b) \(\alpha \) là góc giữa hai đường thẳng \(d:\left\{ \begin{array}{l}x = 1 + t\\y = 2 - \sqrt 3 t\\z = 5\end{array} \right.\) và \(d':\left\{ \begin{array}{l}x = 1 - \sqrt 3 t'\\y = 7 + t'\\z = 9\end{array} \right.\). c) \(\alpha \) là góc giữa hai mặt phẳng \(\left( P \right):4x + 2y - z + 9 = 0\) và \(\
Đề bài
Tính góc \(\alpha \) trong mỗi trường hợp sau:
a) \(\alpha \) là góc giữa hai vectơ \(\overrightarrow a = \left( {1;1; - 1} \right)\) và \(\overrightarrow b = \left( {5;2;7} \right)\);
b) \(\alpha \) là góc giữa hai đường thẳng \(d:\left\{ \begin{array}{l}x = 1 + t\\y = 2 - \sqrt 3 t\\z = 5\end{array} \right.\) và \(d':\left\{ \begin{array}{l}x = 1 - \sqrt 3 t'\\y = 7 + t'\\z = 9\end{array} \right.\).
c) \(\alpha \) là góc giữa hai mặt phẳng \(\left( P \right):4x + 2y - z + 9 = 0\) và \(\left( Q \right):x + y + 6z - 11 = 0\);
d) \(\alpha \) là góc giữa đường thẳng \(d:\frac{x}{2} = \frac{y}{{ - 1}} = \frac{z}{1}\) và mặt phẳng \(\left( P \right):{\rm{ }}x + y - z + 99 = 0\).
Phương pháp giải - Xem chi tiết
‒ Hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) có vectơ chỉ phương lần lượt là \(\overrightarrow {{u_1}} = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow {{u_2}} = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó ta có:
\(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}} \right|}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}\).
‒ Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u = \left( {{a_1};{b_1};{c_1}} \right)\) và mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến \(\overrightarrow n = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó ta có:
\(\sin \left( {\Delta ,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| {\overrightarrow u .\overrightarrow n } \right|}}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow n } \right|}} = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}} \right|}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}\).
‒ Hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = \left( {{A_1};{B_1};{C_1}} \right),\)\(\overrightarrow {{n_2}} = \left( {{A_2};{B_2};{C_2}} \right)\). Khi đó ta có:
\(\cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = \frac{{\left| {{A_1}{A_2} + {B_1}{B_2} + {C_1}{C_2}} \right|}}{{\sqrt {A_1^2 + B_1^2 + C_1^2} .\sqrt {A_2^2 + B_2^2 + C_2^2} }}\).
Lời giải chi tiết
a) \(\cos \alpha = \cos \left( {\overrightarrow a ;\overrightarrow b } \right) = \frac{{1.5 + 1.2 + \left( { - 1} \right).7}}{{\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{5^2} + {2^2} + {7^2}} }} = 0\).
Vậy \(\alpha = {90^ \circ }\).
b) Đường thẳng \(d\) có vectơ chỉ phương \(\overrightarrow u = \left( {1; - \sqrt 3 ;0} \right)\).
Đường thẳng \(d'\) có vectơ chỉ phương \(\overrightarrow {u'} = \left( { - \sqrt 3 ;1;0} \right)\).
Ta có: \(\cos \alpha = \cos \left( {d,d'} \right) = \frac{{\left| {1.\left( { - \sqrt 3 } \right) + \left( { - \sqrt 3 } \right).1 + 0.0} \right|}}{{\sqrt {{1^2} + {{\left( { - \sqrt 3 } \right)}^2} + {0^2}} .\sqrt {{{\left( { - \sqrt 3 } \right)}^2} + {1^2} + {1^2}} }} = \frac{{\sqrt 3 }}{2}\).
Vậy \(\alpha = {30^ \circ }\).
c) Mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến \(\overrightarrow n = \left( {4;2; - 1} \right)\).
Mặt phẳng \(\left( Q \right)\) có vectơ pháp tuyến \(\overrightarrow {n'} = \left( {1;1;6} \right)\).
Ta có: \(\cos \alpha = \cos \left( {\left( P \right),\left( Q \right)} \right) = \frac{{\left| {4.1 + 2.1 + \left( { - 1} \right).6} \right|}}{{\sqrt {{4^2} + {2^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {1^2} + {6^2}} }} = 0\).
Vậy \(\alpha = {90^ \circ }\).
d) Đường thẳng \(d\) có vectơ chỉ phương \(\overrightarrow u = \left( {2; - 1;1} \right)\).
Mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến \(\overrightarrow n = \left( {1;1; - 1} \right)\).
Ta có: \(\sin \alpha = \sin \left( {d,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| {2.1 + \left( { - 1} \right).1 + 1.\left( { - 1} \right)} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {1^2}} .\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} }} = 0\).
Vậy \(\alpha = {0^ \circ }\).
- Giải bài 6 trang 55 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 55 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 54 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 3 trang 54 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 2 trang 54 sách bài tập toán 12 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 8 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 3 trang 87 sách bài tập toán 12 - Chân trời sáng tạo