Giải bài 1 trang 54 sách bài tập toán 12 - Chân trời sáng tạo


Cho đường thẳng (d) có phương trình tham số (left{ begin{array}{l}x = 7 + 5t\y = 3 + 11t\z = 9 - 6tend{array} right.). Tìm một điểm trên (d) và một vectơ chỉ phương của (d).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Cho đường thẳng \(d\) có phương trình tham số \(\left\{ \begin{array}{l}x = 7 + 5t\\y = 3 + 11t\\z = 9 - 6t\end{array} \right.\).

Tìm một điểm trên \(d\) và một vectơ chỉ phương của \(d\).

Phương pháp giải - Xem chi tiết

Đường thẳng \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\) đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) có vectơ chỉ phương \(\overrightarrow u  = \left( {a;b;c} \right)\).

Lời giải chi tiết

Đường thẳng \(d:\left\{ \begin{array}{l}x = 7 + 5t\\y = 3 + 11t\\z = 9 - 6t\end{array} \right.\) đi qua điểm \(M\left( {7;3;9} \right)\) có vectơ chỉ phương \(\overrightarrow u  = \left( {5;11; - 6} \right)\).


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 2 trang 54 sách bài tập toán 12 - Chân trời sáng tạo

    Lập phương trình tham số của đường thẳng (d) trong mỗi trường hợp sau: a) (d) đi qua điểm (Aleft( {1; - 5;0} right)) và có vectơ chỉ phương (overrightarrow a = left( {2;0;7} right)); b) (d) đi qua hai điểm (Mleft( {3; - 1; - 1} right),Nleft( {5;1;2} right)).

  • Giải bài 3 trang 54 sách bài tập toán 12 - Chân trời sáng tạo

    Lập phương trình chính tắc của đường thẳng (d) trong mỗi trường hợp sau: a) (d) đi qua điểm (Mleft( {9;0;0} right)) và có vectơ chỉ phương (overrightarrow a = left( {5; - 11;4} right)); b) (d) đi qua hai điểm (Aleft( {6;0; - 1} right),Bleft( {8;3;2} right)); c) (d) có phương trình tham số (left{ begin{array}{l}x = 2t\y = - 1 + 7t\z = 3 - 6tend{array} right.).

  • Giải bài 4 trang 54 sách bài tập toán 12 - Chân trời sáng tạo

    Xác định vị trí tương đối của hai đường thẳng (d) và (d') trong mỗi trường hợp sau: a) (d:left{ begin{array}{l}x = t\y = 1 + 3t\z = 1 - tend{array} right.) và (d':left{ begin{array}{l}x = 2 + 2t'\y = 7 + 6t'\z = - 1 - 2t'end{array} right.); b) (d:frac{{x - 2}}{2} = frac{y}{3} = frac{z}{1}) và (d':frac{x}{4} = frac{y}{6} = frac{z}{2}); c) (d:left{ begin{array}{l}x = 1 + t\y = 1 + t\z = 2 - tend{array} right.) và (d':frac{{x - 2}}{2} = frac{{y - 2}}{

  • Giải bài 5 trang 55 sách bài tập toán 12 - Chân trời sáng tạo

    Tính góc \(\alpha \) trong mỗi trường hợp sau: a) \(\alpha \) là góc giữa hai vectơ \(\overrightarrow a = \left( {1;1; - 1} \right)\) và \(\overrightarrow b = \left( {5;2;7} \right)\); b) \(\alpha \) là góc giữa hai đường thẳng \(d:\left\{ \begin{array}{l}x = 1 + t\\y = 2 - \sqrt 3 t\\z = 5\end{array} \right.\) và \(d':\left\{ \begin{array}{l}x = 1 - \sqrt 3 t'\\y = 7 + t'\\z = 9\end{array} \right.\). c) \(\alpha \) là góc giữa hai mặt phẳng \(\left( P \right):4x + 2y - z + 9 = 0\) và \(\

  • Giải bài 6 trang 55 sách bài tập toán 12 - Chân trời sáng tạo

    Cho hình chóp (S.ABCD) có đáy (ABCD) là hình vuông cạnh bằng 4. Mặt bên (SAB) là tam giác cân tại (S) có chiều cao bằng 6 và nằm trong mặt phẳng vuông góc với đáy. a) Tính góc (alpha ) giữa hai đường thẳng (SD) và (BC); b) Tính góc (beta ) giữa hai mặt phẳng (left( {SAD} right)) và (left( {SCD} right)).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí