Giải bài 5 trang 32 Chuyên đề học tập Toán 10 – Chân trời sáng tạo>
Chứng minh rằng bất đẳng thức sau đúng với mọi số tự nhiên \(n \ge 2\).
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Chứng minh rằng bất đẳng thức sau đúng với mọi số tự nhiên \(n \ge 2\).
\(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n} > \frac{{2n}}{{n + 1}}\)
Lời giải chi tiết
Ta chứng minh bất đẳng thức bằng phương pháp quy nạp
Với \(n = 2\) ta có \(1 + \frac{1}{2} = \frac{3}{2} > \frac{{2.2}}{{2 + 1}} = \frac{4}{3}\)
Vậy bất đẳng thức đúng với \(n = 2\)
Giải sử bất đẳng thức đúng với \(n = k\) nghĩa là có \(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{k} > \frac{{2k}}{{k + 1}}\)
Ta chứng minh bất đẳng thức đúng với \(n = k + 1\) tức là chứng minh \(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{k} + \frac{1}{{k + 1}} > \frac{{2(k + 1)}}{{k + 2}}\)
Sử dụng giả thiết quy nạp ta có: \(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{k} + \frac{1}{{k + 1}} > \frac{{2k}}{{k + 1}} + \frac{1}{{k + 1}} = \frac{{2k + 1}}{{k + 1}}\)
Ta sẽ nhận được điều phải chứng minh nếu chứng minh được:
\(\frac{{2k + 1}}{{k + 1}} > \frac{{2(k + 1)}}{{k + 2}}\) (*)
Xét hiệu:
\(\begin{array}{l}\frac{{2k + 1}}{{k + 1}} - \frac{{2(k + 1)}}{{k + 2}} = \frac{{\left( {2k + 1} \right)\left( {k + 2} \right) - 2{{\left( {k + 1} \right)}^2}}}{{\left( {k + 1} \right)\left( {k + 2} \right)}}\\ = \frac{{2{k^2} + 5k + 2 - \left( {2{k^2} + 4k + 2} \right)}}{{\left( {k + 1} \right)\left( {k + 2} \right)}} = \frac{k}{{\left( {k + 1} \right)\left( {k + 2} \right)}} > 0\end{array}\)
Do đó (*) được chứng minh.
Vậy bất đẳng thức đúng với mọi số tự nhiên n.
- Giải bài 6 trang 32 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 7 trang 32 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 4 trang 32 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 3 trang 32 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 2 trang 32 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 8 trang 66 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 7 trang 66 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 6 trang 65 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 5 trang 65 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 4 trang 65 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 8 trang 66 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 7 trang 66 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 6 trang 65 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 5 trang 65 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 4 trang 65 Chuyên đề học tập Toán 10 – Chân trời sáng tạo