 Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT
                                                
                            Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT
                         Bài 13. Mở đầu về đường tròn trang 97, 98, 99 Vở thực h..
                                                        Bài 13. Mở đầu về đường tròn trang 97, 98, 99 Vở thực h..
                                                    Giải bài 5 trang 100 vở thực hành Toán 9>
Cho tam giác ABC cân tại A có ba đỉnh nằm trên đường tròn (O). Đường cao AH cắt (O) tại D. Biết (BC = 24cm,AC = 20cm). Tính chiều cao AH và bán kính đường tròn (O).
Tổng hợp đề thi giữa kì 1 lớp 9 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Khoa học tự nhiên
Đề bài
Cho tam giác ABC cân tại A có ba đỉnh nằm trên đường tròn (O). Đường cao AH cắt (O) tại D. Biết \(BC = 24cm,AC = 20cm\). Tính chiều cao AH và bán kính đường tròn (O).
Phương pháp giải - Xem chi tiết
+ Chứng minh H là trung điểm của BC nên tính được HC.
+ Tam giác ACH vuông tại H nên theo định lí Pythagore, ta tính được AH.
+ Chứng minh tam giác ACD vuông tại C.
+ Trong tam giác ACD vuông tại C ta có: \(A{C^2} = AH.AD\) nên tính được AD
+ Bán kính của đường tròn (O) là \(R = \frac{{AD}}{2}\).
Lời giải chi tiết
(H.5.5)

Vì tam giác ABC cân tại A nên đường cao AH cũng là đường trung trực của đoạn BC, suy ra H là trung điểm của BC.
Tam giác ACH vuông tại H nên theo định lí Pythagore, ta được \(A{H^2} = A{C^2} - H{C^2}\), suy ra \(AH = 16cm\).
Tam giác ACD có AD là đường kính của đường tròn (O) nên tam giác ACD vuông tại C.
Trong tam giác ACD vuông tại C ta có: \(A{C^2} = AH.AD\), suy ra \(AD = \frac{{A{C^2}}}{{AH}} = 25cm\).
Vậy bán kính của đường tròn (O) là \(R = \frac{{AD}}{2} = \frac{{25}}{2}cm\).
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ- Giải bài 4 trang 99 vở thực hành Toán 9
- Giải bài 3 trang 99 vở thực hành Toán 9
- Giải bài 2 trang 98 vở thực hành Toán 9
- Giải bài 1 trang 98 vở thực hành Toán 9
- Giải câu hỏi trắc nghiệm trang 97, 98 vở thực hành Toán 9
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            