Giải bài 41 trang 67 sách bài tập toán 9 - Cánh diều tập 1


Tìm x, biết: a) (frac{1}{2}sqrt x - frac{3}{2}sqrt {9x} + 24sqrt {frac{x}{{64}}} = - 17) với (x ge 0) b) (sqrt {frac{x}{5}} = 4) với (x ge 0) c) (sqrt {25{x^2}} = 10) d) (sqrt {{{left( {2x - 1} right)}^2}} = 3) e) (2 - sqrt[3]{{5 - x}} = 0)

Đề bài

Tìm x, biết:

a) \(\frac{1}{2}\sqrt x  - \frac{3}{2}\sqrt {9x}  + 24\sqrt {\frac{x}{{64}}}  =  - 17\) với \(x \ge 0\)

b) \(\sqrt {\frac{x}{5}}  = 4\) với \(x \ge 0\)

c) \(\sqrt {25{x^2}}  = 10\)

d) \(\sqrt {{{\left( {2x - 1} \right)}^2}}  = 3\)

e) \(2 - \sqrt[3]{{5 - x}} = 0\)

Phương pháp giải - Xem chi tiết

Bình phương (lập phương) 2 vế.

Lời giải chi tiết

a) \(\frac{1}{2}\sqrt x - \frac{3}{2}\sqrt {9x} + 24\sqrt {\frac{x}{{64}}} = - 17\)

\(\begin{array}{l}\frac{1}{2}\sqrt x - \frac{3}{2}\sqrt {9x} + 24\sqrt {\frac{x}{{64}}} = - 17\\\frac{1}{2}\sqrt x - \frac{9}{2}\sqrt x + 3\sqrt x = - 17\\\sqrt x \left( {\frac{1}{2} - \frac{9}{2} + 3} \right) = - 17\\\sqrt x \left( {\frac{1}{2} - \frac{9}{2} + 3} \right) = - 17\\ - \sqrt x = - 17\\\sqrt x = 17\\x = 289(tm)\end{array}\)

Vậy \(x = 289\).

b) \(\sqrt {\frac{x}{5}} = 4\)

\(\begin{array}{l}\sqrt {\frac{x}{5}} = 4\\\frac{x}{5} = 16\\x = 80(tm)\end{array}\)

Vậy \(x = 80\).

c) \(\sqrt {25{x^2}} = 10\)

\(\begin{array}{l}\sqrt {25{x^2}} = 10\\25{x^2} = 100\\{x^2} = 4\end{array}\)

\(x = 2\) hoặc \(x = - 2\)

Vậy \(x = 2\);\(x = - 2\)

d) \(\sqrt {{{\left( {2x - 1} \right)}^2}} = 3\)

\({\left( {2x - 1} \right)^2} = 9\)

\(2x - 1 = 3\) hoặc \(2x - 1 = - 3\)

\(2x = 4\) hoặc \(2x = - 2\)

\(x = 2\) hoặc \(x = - 1\)

Vậy \(x = 2\);\(x = - 1\)

e) \(2 - \sqrt[3]{{5 - x}} = 0\)

\(\begin{array}{l}\sqrt[3]{{5 - x}} = 2\\5 - x = 8\\x = - 3\end{array}\)

Vậy \(x = - 3.\)


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 40 trang 67 sách bài tập toán 9 - Cánh diều tập 1

    Cho biểu thức \(P = \frac{2}{{\sqrt x - 1}} + \frac{2}{{\sqrt x + 1}} - \frac{{5 - \sqrt x }}{{x - 1}}\) với \(x \ge 0,x \ne 1\). a) Rút gọn biểu thức P. b) Tìm giá trị của P tại \(x = 1\). c) Tìm giá trị của \(x\) để P nguyên.

  • Giải bài 39 trang 67 sách bài tập toán 9 - Cánh diều tập 1

    Cho biểu thức \(N = \left( {\frac{1}{{\sqrt x }} + \frac{{\sqrt x }}{{\sqrt x + 1}}} \right).\frac{{x + \sqrt x }}{{\sqrt x }}\) với \(x > 0\). a) Rút gọn biểu thức N. b) Tìm giá trị nhỏ nhất của N.

  • Giải bài 38 trang 67 sách bài tập toán 9 - Cánh diều tập 1

    Cho biểu thức \(M = \frac{1}{{2\sqrt x - 2}} - \frac{1}{{2\sqrt x + 2}} + \frac{{\sqrt x }}{{1 - x}}\) với \(x > 0\). a) Rút gọn biểu thức M. b) Tính giá trị biểu thức M tại \(x = \frac{4}{9}.\) c) Tìm giá trị của x để \(\left| M \right| = \frac{1}{3}\).

  • Giải bài 37 trang 67 sách bài tập toán 9 - Cánh diều tập 1

    a) Cho biểu thức: \(C = \frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 3 }} + \frac{1}{{\sqrt 4 }} + ... + \frac{1}{{\sqrt {24} }} + \frac{1}{{\sqrt {25} }}.\) Chứng minh \(C > \frac{{24}}{5}.\) b) Cho biểu thức \(D = \left( {\frac{{y - 2}}{{y + 2\sqrt y }} + \frac{1}{{\sqrt y + 2}}} \right).\frac{{\sqrt y + 1}}{{\sqrt y - 1}}\) với \(y > 0,y \ne 1.\) Chứng minh \(D = \frac{{\sqrt y + 1}}{{\sqrt y }}.\)

  • Giải bài 36 trang 66 sách bài tập toán 9 - Cánh diều tập 1

    a) Cho biểu thức \(A = \frac{1}{{3 - \sqrt 8 }} - \frac{1}{{\sqrt 8 - \sqrt 7 }} + \frac{1}{{\sqrt 7 - \sqrt 6 }} - \frac{1}{{\sqrt 6 - \sqrt 5 }} + \frac{1}{{\sqrt 5 - 2}}\) Chứng minh rằng \(A = 5\). b) Cho biểu thức \(B = \frac{1}{{\sqrt {2 + \sqrt 3 } }} + \frac{1}{{\sqrt {2 - \sqrt 3 } }}\). Chứng minh rằng \(B = \sqrt 6 \).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Cánh diều - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí