Giải bài 32 trang 66 sách bài tập toán 9 - Cánh diều tập 1


Áp dụng quy tắc về căn thức bậc hai của một tích và một thương, hãy rút gọn biểu thức: a) \(\sqrt {98{x^2}} .\sqrt {{y^3}} \) với \(x < 0,y \ge 0\) b) \(\sqrt {{x^3}{{\left( {x - 1} \right)}^2}} \) với \(x \ge 1\) c) \(\sqrt {{x^4}} .\sqrt {{{\left( {x - 7} \right)}^2}} \) với \(x > 7\) d) \(\sqrt {\frac{{{x^2}}}{{36 - 12x + {x^2}}}} \) e) \(\frac{{\sqrt {1250{{\left( {x - 5} \right)}^3}} }}{{\sqrt {2{{\left( {x - 5} \right)}^5}} }}\) với \(x < 5\) g) \(\sqrt {\frac{{1 + x - 2\sqrt x }}{{

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Áp dụng quy tắc về căn thức bậc hai của một tích và một thương, hãy rút gọn biểu thức:

a) \(\sqrt {98{x^2}} .\sqrt {{y^3}} \) với \(x < 0,y \ge 0\)

b) \(\sqrt {{x^3}{{\left( {x - 1} \right)}^2}} \) với \(x \ge 1\)

c) \(\sqrt {{x^4}} .\sqrt {{{\left( {x - 7} \right)}^2}} \) với \(x > 7\)

d) \(\sqrt {\frac{{{x^2}}}{{36 - 12x + {x^2}}}} \)

e) \(\frac{{\sqrt {1250{{\left( {x - 5} \right)}^3}} }}{{\sqrt {2{{\left( {x - 5} \right)}^5}} }}\) với \(x < 5\)

g) \(\sqrt {\frac{{1 + x - 2\sqrt x }}{{1 + x + 2\sqrt x }}} \)  với \(x \ge 0\)

Phương pháp giải - Xem chi tiết

Áp dụng: \(\sqrt a .\sqrt b  = \sqrt {ab} \) với \(a \ge 0,b \ge 0\); \(\frac{{\sqrt a }}{{\sqrt b }} = \sqrt {\frac{a}{b}} \) với \(a \ge 0,b > 0.\)

Lời giải chi tiết

a) \(\sqrt {98{x^2}} .\sqrt {{y^3}} \)

\(= \sqrt {49.2.{x^2}.{y^2}.y}  = 7.\left| x \right|\sqrt {2y}  =  - 7x\sqrt {2y} \) với \(x < 0,y \ge 0\).

b) \(\sqrt {{x^3}{{\left( {x - 1} \right)}^2}} \)

\(= \sqrt {{{\left[ {x\left( {x - 1} \right)} \right]}^2}.x}  = \left| {x\left( {x - 1} \right)} \right|\sqrt x  = x\left( {x - 1} \right).\sqrt x \) với \(x \ge 1\).

c) \(\sqrt {{x^4}} .\sqrt {{{\left( {x - 7} \right)}^2}} \)

\(= {x^2}.\left| {x - 7} \right| = {x^2}\left( {x - 7} \right)\) với \(x > 7\).

d) \(\sqrt {\frac{{{x^2}}}{{36 - 12x + {x^2}}}} \)

\(= \sqrt {\frac{{{x^2}}}{{{{\left( {6 - x} \right)}^2}}}}  = \left| {\frac{x}{{6 - x}}} \right| = \frac{x}{{x - 6}}\) với \(x > 6\).

e) \(\frac{{\sqrt {1250{{\left( {x - 5} \right)}^3}} }}{{\sqrt {2{{\left( {x - 5} \right)}^5}} }} \)

\(= \sqrt {\frac{{1250{{\left( {x - 5} \right)}^3}}}{{2{{\left( {x - 5} \right)}^5}}}}  = \sqrt {\frac{{625}}{{{{\left( {x - 5} \right)}^2}}}}  = \left| {\frac{{25}}{{x - 5}}} \right| = \frac{{25}}{{5 - x}}\) với \(x < 5\)

g) \(\sqrt {\frac{{1 + x - 2\sqrt x }}{{1 + x + 2\sqrt x }}} \)

\(= \sqrt {\frac{{{{\left( {1 - \sqrt x } \right)}^2}}}{{{{\left( {1 + \sqrt x } \right)}^2}}} = } \frac{{\left| {1 - \sqrt x } \right|}}{{1 + \sqrt x }}\) với \(x \ge 0\).


Bình chọn:
3.8 trên 6 phiếu
  • Giải bài 33 trang 66 sách bài tập toán 9 - Cánh diều tập 1

    Trục căn thức ở mẫu: a) \(\frac{{2 - \sqrt 5 }}{{\sqrt 5 }}\) b) \(\frac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}}\) c) \(\frac{8}{{3\sqrt 5 + 3}}\) d) \(\frac{1}{{\sqrt[3]{3} + \sqrt[3]{7}}}\)

  • Giải bài 34 trang 66 sách bài tập toán 9 - Cánh diều tập 1

    Trục căn thức ở mẫu: a) \(\frac{2}{{\sqrt {3x - 1} }}\) với \(x > \frac{1}{3}\) b) \(\frac{{x - \sqrt x }}{{\sqrt x - 1}}\) với \(x \ge 0,x \ne 1\) c) \(\frac{x}{{\sqrt x - \sqrt 7 }}\) với \(x \ge 0,x \ne 7\) d) \(\frac{{1 - x\sqrt x }}{{1 - \sqrt x }}\) với \(x \ge 0,x \ne 1\)

  • Giải bài 35 trang 66 sách bài tập toán 9 - Cánh diều tập 1

    Chứng minh: a) \(\frac{{\sqrt 5 - \sqrt 3 }}{{\sqrt 5 + \sqrt 3 }} + \frac{{\sqrt 5 + \sqrt 3 }}{{\sqrt 5 - \sqrt 3 }} - \frac{{\sqrt 5 + 1}}{{\sqrt 5 - 1}} = \frac{{13 - \sqrt 5 }}{2}\) b) \(\frac{{x\sqrt y + y\sqrt x }}{{\sqrt {xy} }}:\frac{1}{{\sqrt x - \sqrt y }} = x - y\) với \(x > 0,y > 0,x \ne y.\)

  • Giải bài 36 trang 66 sách bài tập toán 9 - Cánh diều tập 1

    a) Cho biểu thức \(A = \frac{1}{{3 - \sqrt 8 }} - \frac{1}{{\sqrt 8 - \sqrt 7 }} + \frac{1}{{\sqrt 7 - \sqrt 6 }} - \frac{1}{{\sqrt 6 - \sqrt 5 }} + \frac{1}{{\sqrt 5 - 2}}\) Chứng minh rằng \(A = 5\). b) Cho biểu thức \(B = \frac{1}{{\sqrt {2 + \sqrt 3 } }} + \frac{1}{{\sqrt {2 - \sqrt 3 } }}\). Chứng minh rằng \(B = \sqrt 6 \).

  • Giải bài 37 trang 67 sách bài tập toán 9 - Cánh diều tập 1

    a) Cho biểu thức: \(C = \frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 3 }} + \frac{1}{{\sqrt 4 }} + ... + \frac{1}{{\sqrt {24} }} + \frac{1}{{\sqrt {25} }}.\) Chứng minh \(C > \frac{{24}}{5}.\) b) Cho biểu thức \(D = \left( {\frac{{y - 2}}{{y + 2\sqrt y }} + \frac{1}{{\sqrt y + 2}}} \right).\frac{{\sqrt y + 1}}{{\sqrt y - 1}}\) với \(y > 0,y \ne 1.\) Chứng minh \(D = \frac{{\sqrt y + 1}}{{\sqrt y }}.\)

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí