Giải bài 3 trang 85 sách bài tập toán 12 - Chân trời sáng tạo>
Chọn đáp án đúng. Bạn Lan có 2 con xúc xắc cân đối, 1 con có màu xanh và 1 con có màu đỏ. Lan gieo đồng thời 2 con xúc xắc. a) Xác suất của biến cố con xúc xắc màu xanh xuất hiện mặt 1 chấm, biết rằng tổng số chấm trên hai con xúc xắc bằng 5 là: A. (frac{1}{3}). B. (frac{1}{5}). C. (frac{1}{4}). D. (frac{1}{6}). b) Xác suất của biến cố con xúc xắc màu đỏ xuất hiện mặt 6 chấm, biết rằng có ít nhất một con xúc xắc xuất hiện mặt 6 chấm là A. (frac{{13}}{{36}}). B. (frac{1
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Đề bài
Chọn đáp án đúng.
Bạn Lan có 2 con xúc xắc cân đối, 1 con có màu xanh và 1 con có màu đỏ. Lan gieo đồng thời 2 con xúc xắc.
a) Xác suất của biến cố con xúc xắc màu xanh xuất hiện mặt 1 chấm, biết rằng tổng số chấm trên hai con xúc xắc bằng 5 là:
A. \(\frac{1}{3}\).
B. \(\frac{1}{5}\).
C. \(\frac{1}{4}\).
D. \(\frac{1}{6}\).
b) Xác suất của biến cố con xúc xắc màu đỏ xuất hiện mặt 6 chấm, biết rằng có ít nhất một con xúc xắc xuất hiện mặt 6 chấm là
A. \(\frac{{13}}{{36}}\).
B. \(\frac{1}{6}\).
C. \(\frac{1}{2}\).
D. \(\frac{6}{{11}}\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức tính xác suất của \(A\) với điều kiện \(B\): \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\).
Lời giải chi tiết
a) Gọi \(A\) là biến cố “Con xúc xắc màu xanh xuất hiện 1 chấm” và \(B\) là biến cố “Tổng số chấm trên hai con xúc xắc bằng 5”.
Khi đó ta có: \(P\left( A \right) = \frac{1}{6},P\left( B \right) = \frac{4}{{36}} = \frac{1}{9}\).
Khi đó \(AB\) là biến cố “Con xúc xắc màu xanh xuất hiện 1 chấm và con xúc xắc màu đỏ xuất hiện mặt 4 chấm”. Vậy \(P\left( {AB} \right) = \frac{1}{{36}}\).
Theo công thức tính xác suất có điều kiện, ta có: \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{1}{{36}}:\frac{1}{9} = \frac{1}{4}\).
Chọn C
b) Gọi \(C\) là biến cố “Con xúc xắc màu đỏ xuất hiện mặt 6 chấm” và \(D\) là biến cố “Có ít nhất một con xúc xắc xuất hiện mặt 6 chấm”.
Khi đó ta có: \(P\left( C \right) = \frac{1}{6},P\left( D \right) = \frac{{11}}{{36}}\).
Khi đó \(C{\rm{D}}\) là biến cố “Con xúc xắc màu xanh xuất hiện 1 chấm và con xúc xắc còn lại xuất hiện mặt bất kì”. Vậy \(P\left( {C{\rm{D}}} \right) = \frac{6}{{36}} = \frac{1}{6}\).
Theo công thức tính xác suất có điều kiện, ta có: \(P\left( {C|D} \right) = \frac{{P\left( {C{\rm{D}}} \right)}}{{P\left( D \right)}} = \frac{1}{6}:\frac{{11}}{{36}} = \frac{6}{{11}}\).
Chọn D
- Giải bài 4 trang 86 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 86 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 1 trang 86 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 2 trang 86 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 3 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 8 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 3 trang 87 sách bài tập toán 12 - Chân trời sáng tạo