Giải bài 3 trang 55 Chuyên đề học tập Toán 10 – Chân trời sáng tạo


Cho đường tròn (C) tâm ({F_1}), bán kính r và một điểm ({F_2}) thỏa mãn ({F_1}{F_2} = 4r).

Đề bài

Cho đường tròn (C) tâm \({F_1}\), bán kính r và một điểm \({F_2}\) thỏa mãn \({F_1}{F_2} = 4r\).

a) Chứng tỏ rằng tâm của các đường tròn đi qua \({F_2}\) và tiếp xúc với \((C)\) nằm trên một đường hypebol (H).

b) Viết phương trình chính tắc và tìm tâm sai của (H).

Lời giải chi tiết

a) Xét đường tròn \((M,R)\) đi qua \({F_2}\) và tiếp xúc với \((C)\)

Ta có: \(M{F_1} = R + r;M{F_2} = R \Rightarrow M{F_1} - M{F_2} = r=2a\)

\( \Rightarrow M \in \) hypebol (H) có \(2c={F_1}{F_2} = 4r\) và \(2a = r\)

b) Ta có: \({b^2} = {a^2} - {c^2} = 4{r^2} - {\left( {\frac{r}{2}} \right)^2} = \frac{{15{r^2}}}{4}\)

Phương trình chính tắc của (H) là \(\frac{{{x^2}}}{{\frac{{{r^2}}}{4}}} - \frac{{{y^2}}}{{\frac{{15{r^2}}}{4}}} = 1\)

Tâm sai \(e = \frac{c}{a} = \frac{{2r}}{{\frac{r}{2}}} = 4\)

 


Bình chọn:
3.8 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!