 Giải chuyên đề học tập Toán lớp 11 Chân trời sáng tạo
                                                
                            Giải chuyên đề học tập Toán lớp 11 Chân trời sáng tạo
                         Bài 2. Phép tịnh tiến Chuyên đề học tập Toán 11 Chân tr..
                                                        Bài 2. Phép tịnh tiến Chuyên đề học tập Toán 11 Chân tr..
                                                    Giải bài 3 trang 14 Chuyên đề học tập Toán 11 Chân trời sáng tạo>
Cho phép tịnh tiến \({T_{\vec u}}\) trong đó \(\vec u = \left( {3;5} \right)\)
Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Cho phép tịnh tiến \({T_{\vec u}}\) trong đó \(\vec u = \left( {3;5} \right)\)
a) Tìm ảnh của các điểm \(\;A\left( {-3;{\rm{ }}4} \right),{\rm{ }}B\left( {2;{\rm{ }}-7} \right)\;\)qua \({T_{\vec u}}\)
b) Biết rằng M’(2; 6) là ảnh của điểm M qua \({T_{\vec u}}\). Tìm tọa độ của điểm M.
c) Tìm ảnh của đường thẳng \(d:{\rm{ }}4x{\rm{ }}-{\rm{ }}3y{\rm{ }} + {\rm{ }}7{\rm{ }} = {\rm{ }}0\) qua \({T_{\vec u}}\).
Phương pháp giải - Xem chi tiết
Cho vectơ \(\overrightarrow u \), phép tịnh tiến theo vectơ \(\overrightarrow u \) là phép biến hình biến điểm M thành điểm M’ sao cho \(\overrightarrow {MM'} = \overrightarrow u \).
Nếu \(M'(x';y')\) là ảnh của \(M(x;y)\) qua phép tịnh tiến \({T_{\overrightarrow u }}\) , \(\overrightarrow u = \left( {a;\,b} \right)\) thì biểu thức tọa độ của phép tịnh tiến là \(\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\)
Lời giải chi tiết
a) Đặt \(A'\left( {x';y'} \right) = {T_{\vec u}}\left( A \right)\).
Suy ra \(\overrightarrow {A{A'}} = \vec u\) mà \(\overrightarrow {AA'} = \left( {x' + 3;y' - 4} \right)\)
Do đó \(\left\{ {\begin{array}{*{20}{l}}{{\rm{x'}} + 3 = 3}\\{{\rm{y'}} - 4 = 5}\end{array}} \right.\)
Vì vậy \(\left\{ {\begin{array}{*{20}{l}}{{\rm{x'}} = 0}\\{{\rm{y'}} = 9}\end{array}} \right.\)
Suy ra tọa độ A’(0; 9).
Đặt \(B'\left( {x'';y''} \right) = {T_{\vec u}}\left( B \right)\).
Suy ra \(\overrightarrow {BB'} = {\rm{\vec u}}\) mà \(\overrightarrow {BB'} = \left( {x'' - 2\;;\;{\rm{y''}} + 7} \right)\)
Do đó \(\left\{ {\begin{array}{*{20}{l}}{{\rm{x''}} - 2 = 3}\\{{\rm{y''}} + 7 = 5}\end{array}} \right.\)
Vì vậy \(\left\{ {\begin{array}{*{20}{l}}{{\rm{x''}} = 5}\\{{\rm{y''}} = - 2}\end{array}} \right.\)
Suy ra tọa độ B’(5; –2).
Vậy ảnh của các điểm A, B qua \({T_{\vec u}}\) lần lượt là các điểm A’(0; 9), B’(5; –2).
b) Gọi \(M({x_M};{\rm{ }}{y_M}).\)
Theo đề, ta có \(M' = {T_{\vec u}}\left( M \right)\).
Suy ra \(\overrightarrow {MM'} = {\rm{\vec u}}\), mà \(\overrightarrow {MM'} = \left( {2 - {{\rm{x}}_{\rm{M}}}\;;\;6 - {{\rm{y}}_{\rm{M}}}} \right)\)
Do đó \(\left\{ {\begin{array}{*{20}{l}}{2 - {{\rm{x}}_{\rm{M}}} = 3}\\{6 - {{\rm{y}}_{\rm{M}}} = 5}\end{array}} \right.\)
Vì vậy \(\left\{ {\begin{array}{*{20}{l}}{{{\rm{x}}_{\rm{M}}} = - 1}\\{{{\rm{y}}_{\rm{M}}} = 1}\end{array}} \right.\)
Vậy tọa độ M(–1; 1) thỏa mãn yêu cầu bài toán.
c) Chọn điểm \(N\left( {-1;{\rm{ }}1} \right) \in d:{\rm{ }}4x-3y + 7 = 0.\)
Gọi \(N'\left( {x';{\rm{ }}y'} \right)\) lần lượt là ảnh của N qua \({T_{\vec u}}\)
Ta có \({T_{\vec u}}\left( N \right) = N'\), suy ra \(\overrightarrow {N{N'}} = \vec u\) với \(\overrightarrow {NN'} = \left( {x' + 1;y' - 1} \right)\)
Do đó \(\left\{ {\begin{array}{*{20}{l}}{{\rm{x'}} + 1 = 3}\\{{\rm{y'}} - 1 = 5}\end{array}} \right.\)
Vì vậy \(\left\{ {\begin{array}{*{20}{l}}{{\rm{x'}} = 2}\\{{\rm{y'}} = 6}\end{array}} \right.\)
Suy ra tọa độ N’(2; 6).
Đường thẳng \(d:{\rm{ }}4x-3y + 7 = 0\) có vectơ pháp tuyến \({\vec n_d} = \left( {4; - 3} \right)\).
Gọi d’ là ảnh của d qua \({T_{\vec u}}\) do đó d’ song song hoặc trùng với d nên d’ nhận \({\vec n_d} = \left( {4; - 3} \right)\) làm vectơ pháp tuyến.
Ta có d’ là đường thẳng đi qua \(M'\left( {2;{\rm{ }}6} \right)\) và có vectơ pháp tuyến \({\vec n_d} = \left( {4; - 3} \right)\) nên có phương trình là:
\(4\left( {x-2} \right)-3\left( {y-6} \right) = 0 \Leftrightarrow 4x-3y + 10 = 0.\)
Vậy ảnh của đường thẳng \(d:4x-3y + 7 = 0\) qua \({T_{\vec u}}\) là đường thẳng \(d':4x-3y + 10 = 0.\)
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ- Giải bài 4 trang 14 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 5 trang 14 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 2 trang 14 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 1 trang 14 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải mục 2 trang 12, 13 Chuyên đề học tập Toán 11 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải mục 2 trang 84, 85 Chuyên đề học tập Toán 11 - Chân trời sáng tạo
- Giải bài 3 trang 29 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 11 trang 92 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 12 trang 92 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 10 trang 92 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải mục 2 trang 84, 85 Chuyên đề học tập Toán 11 - Chân trời sáng tạo
- Giải bài 3 trang 29 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 12 trang 92 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 11 trang 92 Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải bài 10 trang 92 Chuyên đề học tập Toán 11 Chân trời sáng tạo
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            