Giải bài 24 trang 19 sách bài tập toán 9 - Chân trời sáng tạo tập 2


Một phòng họp có 420 cái ghế được chia thành các dãy có số ghế bằng nhau. Nếu thêm cho mỗi dãy 7 cái ghế và bớt đi 5 dãy thì số ghế trong phòng họp không thay đổi. Hỏi lúc đầu trong phòng họp có bao nhiêu dãy ghế?

Đề bài

Một phòng họp có 420 cái ghế được chia thành các dãy có số ghế bằng nhau. Nếu thêm cho mỗi dãy 7 cái ghế và bớt đi 5 dãy thì số ghế trong phòng họp không thay đổi. Hỏi lúc đầu trong phòng họp có bao nhiêu dãy ghế?

Phương pháp giải - Xem chi tiết

Gọi số dãy ghế của phòng họp lúc đầu là x (\(x \in \mathbb{N}*)\)

Dựa vào dữ kiện đề bài để lập phương trình

Giải phương trình và kết luận.

Lời giải chi tiết

Gọi số dãy ghế của phòng họp lúc đầu là x (\(x \in \mathbb{N}*)\)

Số ghế ở mỗi dãy lúc đầu là \(\frac{{420}}{x}\) (cái).

Số ghế ở mỗi dãy lúc sau là \(\frac{{420}}{{x - 5}}\) (cái).

Theo đề bài, ta có phương trình: \(\frac{{420}}{{x - 5}} - \frac{{420}}{x} = 7\).

Giải phương trình trên, ta được x1 = 20 (thoả mãn); x2 = - 15 (loại).

Vậy lúc đầu trong phòng họp có 20 dãy ghế.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Chân trời sáng tạo - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí