Giải bài 17 trang 54 sách bài tập toán 9 - Chân trời sáng tạo tập 1


Cho tam giác ABC vuông tại A, (AB = sqrt 2 ,AC = sqrt 6 ). Tính giá trị đúng (không làm trò) của a) Chu vi và diện tích tam giác ABC. b) Độ dài đường cao AH của tam giác ABC.

Đề bài

Cho tam giác ABC vuông tại A, \(AB = \sqrt 2 ,AC = \sqrt 6 \). Tính giá trị đúng (không làm trò) của

a) Chu vi và diện tích tam giác ABC.

b) Độ dài đường cao AH của tam giác ABC.

Phương pháp giải - Xem chi tiết

Dựa vào công thức chu vi tam giác ABC: \(P = AB + AC + BC;\)

diện tích tam giác ABC: \(S = \frac{1}{2}AB.AC\) .

Lời giải chi tiết

a) \(BC = \sqrt {A{B^2} + A{C^2}}  = \sqrt {2 + 6}  = \sqrt 8  = 2\sqrt 2 .\)

Chu vi tam giác ABC là:

\(P = AB + AC + BC \\= \sqrt 2  + \sqrt 6  + 2\sqrt 2  = \sqrt 6  + 3\sqrt 2 .\)

Diện tích tam giác ABC là:

\(S = \frac{1}{2}AB.AC = \frac{1}{2}.\sqrt 2 .\sqrt 6  = \sqrt 3 \).

b) Ta có \(S = \frac{1}{2}BC.AH\)

suy ra \(AH = \frac{{2S}}{{BC}} = \frac{{2\sqrt 3 }}{{2\sqrt 2 }} = \frac{{\sqrt 6 }}{2}\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Chân trời sáng tạo - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí