Giải bài 10 trang 20 sách bài tập toán 11 - Chân trời sáng tạo tập 1>
Phương trình dao động điều hòa của một vật tại thời điểm t giây được cho bởi công thức \(x\left( t \right) = A\cos \left( {\omega t + \varphi } \right)\), trong đó x(t) (cm) là li độ của vật tại thời điểm t giây, A là biên độ dao động \(\left( {A > 0} \right)\) và \(\varphi \in \left[ { - \pi ;\pi } \right]\) là pha ban đầu của dao động.
Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Phương trình dao động điều hòa của một vật tại thời điểm t giây được cho bởi công thức \(x\left( t \right) = A\cos \left( {\omega t + \varphi } \right)\), trong đó x(t) (cm) là li độ của vật tại thời điểm t giây, A là biên độ dao động \(\left( {A > 0} \right)\) và \(\varphi \in \left[ { - \pi ;\pi } \right]\) là pha ban đầu của dao động.
Xét hai dao động điều hòa có phương trình lần lượt là:
\({x_1}\left( t \right) = 3\cos \left( {\frac{\pi }{4}t + \frac{\pi }{3}} \right)\left( {cm} \right)\) và \({x_2}\left( t \right) = 3\cos \left( {\frac{\pi }{4}t - \frac{\pi }{6}} \right)\left( {cm} \right)\)
a) Xác định phương trình của dao động tổng hợp \(x\left( t \right) = {x_1}\left( t \right) + {x_2}\left( t \right)\).
b) Tìm biên độ và pha ban đầu của dao động tổng hợp trên.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về công thức biến đổi tổng thành tích để tính: \(\cos \alpha + \cos \beta = 2\cos \frac{{\alpha + \beta }}{2}\cos \frac{{\alpha - \beta }}{2}\)
Lời giải chi tiết
a) Ta có: \({x_1}\left( t \right) + {x_2}\left( t \right) \) \( = 3\cos \left( {\frac{\pi }{4}t + \frac{\pi }{3}} \right) + 3\cos \left( {\frac{\pi }{4}t - \frac{\pi }{6}} \right) \) \( = 6\cos \left( {\frac{\pi }{4}t + \frac{\pi }{{12}}} \right)\cos \frac{\pi }{4}\) \( \) \( = 3\sqrt 2 \cos \left( {\frac{\pi }{4}t + \frac{\pi }{{12}}} \right)\).
Do đó, phương trình của dao động tổng hợp là: \(x\left( t \right) \) \( = 3\sqrt 2 \cos \left( {\frac{\pi }{4}t + \frac{\pi }{{12}}} \right)\)
b) Dao động tổng hợp trên có biên độ \(A \) \( = 3\sqrt 2 cm\) và pha ban đầu \(\varphi \) \( = \frac{\pi }{{12}}\).
- Giải bài 9 trang 20 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 8 trang 20 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 7 trang 20 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 6 trang 20 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 5 trang 20 sách bài tập toán 11 - Chân trời sáng tạo tập 1
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 5 trang 162 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 4 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 3 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 2 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 1 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 5 trang 162 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 4 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 3 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 2 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 1 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1