Giải bài 5 trang 20 sách bài tập toán 11 - Chân trời sáng tạo tập 1


Chứng minh rằng giá trị của các biểu thức không phụ thuộc vào giá trị của x. a) \({\sin ^2}x + \cos \left( {\frac{\pi }{3} - x} \right)\cos \left( {\frac{\pi }{3} + x} \right)\);

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Chứng minh rằng giá trị của các biểu thức không phụ thuộc vào giá trị của x.

a) \({\sin ^2}x + \cos \left( {\frac{\pi }{3} - x} \right)\cos \left( {\frac{\pi }{3} + x} \right)\);

b) \(\cos \left( {x - \frac{\pi }{3}} \right)\cos \left( {x + \frac{\pi }{4}} \right) + \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x + \frac{{3\pi }}{4}} \right)\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về công thức lượng giác để tính:

a) \(\cos \alpha \cos \beta  = \frac{1}{2}\left[ {\cos \left( {\alpha  + \beta } \right) + \cos \left( {\alpha  - \beta } \right)} \right]\), \(\cos 2\alpha  = 2{\cos ^2}\alpha  - 1\)

b) \(\cos \alpha \cos \beta  = \frac{1}{2}\left[ {\cos \left( {\alpha  + \beta } \right) + \cos \left( {\alpha  - \beta } \right)} \right]\)

Lời giải chi tiết

a) \({\sin ^2}x + \cos \left( {\frac{\pi }{3} - x} \right)\cos \left( {\frac{\pi }{3} + x} \right) \) \(= {\sin ^2}x + \frac{1}{2}\left( {\cos \frac{{2\pi }}{3} + \cos 2x} \right) \) \(= {\sin ^2}x - \frac{1}{4} + \frac{1}{2}\cos 2x\)

\(= {\sin ^2}x - \frac{1}{4} + \frac{1}{2}\left( {1 - 2{{\sin }^2}x} \right) \) \(= \frac{1}{4}\)

Vậy giá trị của biểu thức \({\sin ^2}x + \cos \left( {\frac{\pi }{3} - x} \right)\cos \left( {\frac{\pi }{3} + x} \right)\) không phụ thuộc vào giá trị của x.

b) \(\cos \left( {x - \frac{\pi }{3}} \right)\cos \left( {x + \frac{\pi }{4}} \right) + \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x + \frac{{3\pi }}{4}} \right)\)

\(= \frac{1}{2}\left[ {\cos \frac{{7\pi }}{{12}} + \cos \left( {2x - \frac{\pi }{{12}}} \right)} \right] + \frac{1}{2}\left[ {\cos \frac{{7\pi }}{{12}} + \cos \left( {2x + \frac{{11\pi }}{{12}}} \right)} \right]\)

\(= \frac{1}{2}\left[ {\cos \left( {2x - \frac{\pi }{{12}}} \right) + \cos \left( {2x + \pi  - \frac{\pi }{{12}}} \right)} \right] + \cos \frac{{7\pi }}{{12}}\)

\(= \frac{1}{2}\left[ {\cos \left( {2x - \frac{\pi }{{12}}} \right) - \cos \left( {2x - \frac{\pi }{{12}}} \right)} \right] + \cos \frac{{7\pi }}{{12}} \) \(= \cos \frac{{7\pi }}{{12}}\)

Vậy giá trị của biểu thức \(\cos \left( {x - \frac{\pi }{3}} \right)\cos \left( {x + \frac{\pi }{4}} \right) + \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x + \frac{{3\pi }}{4}} \right)\) không phụ thuộc vào giá trị của x.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí