Giải đề thi học kì 2 toán lớp 10 năm 2020 - 2021 trường THPT Nguyễn Xuân Ôn

Làm đề thi

Câu hỏi 1 :

Giải bất phương trình:

Câu 1:

\(\dfrac{3}{{x + 1}} \ge - 2\)

Phương pháp giải:

Chuyển vế rồi quy đồng.

Sử dụng dấu của nhị thức bậc nhất.

Lời giải chi tiết:

\(\begin{array}{l}\dfrac{3}{{x + 1}} \ge - 2 \Leftrightarrow \dfrac{3}{{x + 1}} + 2 \ge 0\\ \Leftrightarrow \dfrac{{2x + 5}}{{x + 1}} \ge 0\end{array}\)

Bảng xét dấu:

Từ bảng xét dấu ta thấy \(\dfrac{{2x + 5}}{{x + 1}} \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \le - \dfrac{5}{2}\\x > - 1\end{array} \right.\)

Đáp án - Lời giải

Câu 2:

\(\sqrt {{x^2} - 10x + 9} \le 2x - 3\)

Phương pháp giải:

\(\sqrt {f\left( x \right)} \le g\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}g\left( x \right) \ge 0\\f\left( x \right) \ge 0\\f\left( x \right) \le {g^2}\left( x \right)\end{array} \right.\)

Lời giải chi tiết:

\(\begin{array}{l}\sqrt {{x^2} - 10x + 9} \le 2x - 3\\ \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 10x + 9 \ge 0\\2x - 3 \ge 0\\{x^2} - 10x + 9 \le {\left( {2x - 3} \right)^2}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x \ge 9\\x \le 1\end{array} \right.\\x \ge \dfrac{3}{2}\\3{x^2} - 2x \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 9\\\left[ \begin{array}{l}x \ge \dfrac{3}{2}\\x \le 0\end{array} \right.\end{array} \right.\\ \Leftrightarrow x \ge 9\end{array}\)

Vậy \(S = \left[ {9; + \infty } \right)\)

Đáp án - Lời giải

Câu hỏi 2 :

Tìm m để phương trình:

\(\left( {m + 1} \right){x^2} + 2\left( {m + 2} \right)x + 3m + 4 = 0\) có hai nghiệm dương phân biệt.

Phương pháp giải:

Phương trình \(a{x^2} + bx + c = 0\) có 2 nghiệm dương phân biệt\( \Leftrightarrow \left\{ \begin{array}{l}a \ne 0\\\Delta > 0\\S = - \dfrac{a}{b} > 0\\P = \dfrac{c}{a} > 0\end{array} \right.\)

Lời giải chi tiết:

\(\left( {m + 1} \right){x^2} + 2\left( {m + 2} \right)x + 3m + 4 = 0\) có hai nghiệm dương phân biệt.

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}m + 1 \ne 0\\{\left( {m + 2} \right)^2} - \left( {m + 1} \right).\left( {3m + 4} \right) > 0\\\dfrac{{ - 2\left( {m + 2} \right)}}{{m + 1}} > 0\\\dfrac{{3m + 4}}{{m + 1}} > 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m \ne - 1\\ - 2{m^2} - 3m > 0\\ - 2 < m < - 1\\\left[ \begin{array}{l}m > - 1\\m < - \dfrac{4}{3}\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - \dfrac{3}{2} < m < 0\\ - 2 < m < - 1\\m < - \dfrac{4}{3}\end{array} \right.\\ \Leftrightarrow - \dfrac{3}{2} < m < - \dfrac{4}{3}\end{array}\)

Đáp án - Lời giải

Câu hỏi 3 :

Tính

Câu 1:

Cho \(\sin \alpha = \dfrac{1}{3}\) và \(\dfrac{\pi }{2} < \alpha < \pi \). Tính \(\cos \alpha ;\sin \left( {\alpha + \dfrac{\pi }{6}} \right)\) và \(\cos 2\alpha \).

Phương pháp giải:

Sử dụng công thức: \({\sin ^2}x + {\cos ^2}x = 1\)

Xác định dấu của \(\cos x\)

Lời giải chi tiết:

\(\begin{array}{l}{\sin ^2}x + {\cos ^2}x = 1\\ \Rightarrow \left| {\cos x} \right| = \sqrt {1 - \dfrac{1}{9}} = \dfrac{{2\sqrt 2 }}{3}\\\dfrac{\pi }{2} < \alpha < \pi \Rightarrow \cos x < 0\\ \Rightarrow \cos x = - \dfrac{{2\sqrt 2 }}{3}\end{array}\)

\(\begin{array}{l}\sin \left( {\alpha + \dfrac{\pi }{6}} \right)\\ = \sin \alpha .\cos \dfrac{\pi }{6} + \cos \alpha .\sin \dfrac{\pi }{6}\\ = \dfrac{1}{3}.\dfrac{{\sqrt 3 }}{2} + \dfrac{{2\sqrt 2 }}{3}.\dfrac{1}{2}\\ = \dfrac{{\sqrt 3 + 2\sqrt 2 }}{6}\end{array}\)

\(\cos 2\alpha = 2{\cos ^2}x - 1 = 2.\dfrac{8}{9} - 1 = \dfrac{7}{9}\)

Đáp án - Lời giải

Câu 2:

Chứng minh đẳng thức sau: \(\dfrac{{\cos 2x + 2{{\sin }^2}x}}{{1 - \cos 2x + \sin 2x}}.\left( {1 + \tan x} \right) = \dfrac{1}{{\sin 2x}}\)

Phương pháp giải:

Biến đổi vế trái về vế phải.

\(\cos 2x = 1 - 2{\sin ^2}x\).

Lời giải chi tiết:

\(\begin{array}{l}VT = \dfrac{{\cos 2x + 2{{\sin }^2}x}}{{1 - \cos 2x + \sin 2x}}.\left( {1 + \tan x} \right)\\ = \dfrac{1}{{2{{\sin }^2}x + \sin 2x}}.\dfrac{{\sin x + \cos x}}{{\cos x}}\\ = \dfrac{1}{{2\sin x\left( {\sin x + \cos x} \right)}}.\dfrac{{\sin x + \cos x}}{{\cos x}}\\ = \dfrac{1}{{2\sin x.\cos x}} = \dfrac{1}{{\sin 2x}} = VP\end{array}\)

Đáp án - Lời giải

Câu hỏi 4 :

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): \({x^2} + {y^2} + 6x - 4y + 9 = 0\) và đường thẳng \(\Delta :3x - 4y + 2 = 0\).

Câu 1:

Tìm tâm và bán kính của đường tròn (C).

Phương pháp giải:

Đưa phương trình đường tròn về đạng chính tắc: \({\left( {x - {x_0}} \right)^2} + {\left( {y - {y_0}} \right)^2} = {R^2}\)

Lời giải chi tiết:

\(\begin{array}{l}{x^2} + {y^2} + 6x - 4y + 9 = 0\\ \Leftrightarrow {\left( {x + 3} \right)^2} + {\left( {y - 2} \right)^2} = {3^2} + {2^2} - 9\\ \Leftrightarrow {\left( {x + 3} \right)^2} + {\left( {y - 2} \right)^2} = {2^2}\end{array}\)

Vậy (C) có tâm I(-3;2), bán kính R=2.

Đáp án - Lời giải

Câu 2:

Viết phương trình tiếp tuyến của đường tròn (C) biết tiếp tuyến vuông góc với đường thẳng \(\Delta \).

Phương pháp giải:

\(\Delta '\) là tiếp tuyến của đường tròn (C)\( \Leftrightarrow d\left( {I,\Delta '} \right) = R\) với I là tâm và R là bán kính đường tròn.

\(\Delta '\) vuông góc với đường thẳng \(\Delta :ax + by + c = 0\) thì nhận \(\overrightarrow n \left( {b; - a} \right)\) làm vecto pháp tuyến.

Lời giải chi tiết:

Gọi \(\Delta '\) là tiếp tuyến cần tìm. khi đó \(\Delta ' \bot \Delta \) nên có dạng: \(4x + 3y + c = 0\).

Vì \(\Delta '\) là tiếp tuyến của đường tròn (C) nên

\(\begin{array}{l}d\left( {I,\Delta '} \right) = 2\\ \Leftrightarrow \dfrac{{\left| {4.\left( { - 3} \right) + 3.2 + c} \right|}}{5} = 2\\ \Leftrightarrow \left| {c - 6} \right| = 10 \Leftrightarrow \left[ \begin{array}{l}c = 16\\c = - 4\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\Delta ':4x + 3y + 16 = 0\\\Delta ':4x + 3y - 4 = 0\end{array} \right.\end{array}\)

Đáp án - Lời giải

Câu 3:

Viết phương trình đường thẳng (d) đi qua điểm \(M\left( { - 2; - 1} \right)\) và cắt đường tròn (C) tại hai điểm A, B sao cho \(AB = 2\sqrt 3 \).

Phương pháp giải:

Gọi phương trình đường thẳng đi qua điểm \(M\left( {{x_0};{y_0}} \right)\) là \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) = 0\).

(d) cắt đường tròn (C) tại hai điểm A, B thì \({\left[ {d\left( {I,d} \right)} \right]^2} + {\left( {\dfrac{{AB}}{2}} \right)^2} = {R^2}\) theo Py- ta- go.

Lời giải chi tiết:

Gọi phương trình đường thẳng đi qua điểm \(M\left( { - 2; - 1} \right)\) là \(a\left( {x + 2} \right) + b\left( {y + 1} \right) = 0\)

\( \Leftrightarrow ax + by + 2a + b = 0\).

(d) cắt đường tròn (C) tại hai điểm A, B nên \({\left[ {d\left( {I,d} \right)} \right]^2} + {\left( {\dfrac{{AB}}{2}} \right)^2} = {R^2}\)

\(\begin{array}{l} \Leftrightarrow d\left( {I,d} \right) = 1\\ \Leftrightarrow \dfrac{{\left| {a.\left( { - 3} \right) + b.2 + 2a + b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = 1\\ \Leftrightarrow \left| { - a + 3b} \right| = \sqrt {{a^2} + {b^2}} \\ \Leftrightarrow {a^2} - 6ab + 9{b^2} = {a^2} + {b^2}\\ \Leftrightarrow - 6ab + 8{b^2} = 0 \Leftrightarrow \left[ \begin{array}{l}b = 0\\3a = 4b\end{array} \right.\end{array}\)

Với \(b = 0 \Rightarrow \left( d \right):x + 2 = 0\)

Với \(3a = 4b\). Chọn a=4,b=3. Khi đó \(\left( d \right):4x + 3y + 11 = 0\)

Vậy \(\left( d \right):x + 2 = 0\) hoặc \(\left( d \right):4x + 3y + 11 = 0\)

Đáp án - Lời giải

Câu hỏi 5 :

Giải bất phương trình: \(3x + 1 + \sqrt {9{x^2} - 12x + 1} \ge 3\sqrt {3x} \)

Phương pháp giải:

Tìm điều kiện xác định của bất phương trình: \(\sqrt {f\left( x \right)} \) xác định \( \Leftrightarrow f\left( x \right) \ge 0\)

Lời giải chi tiết:

Điều kiện: \(\left\{ \begin{array}{l}9{x^2} - 12x + 1 \ge 0\\x \ge 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 2 + \sqrt 3 \\0 \le x \le 2 - \sqrt 3 \end{array} \right.\)

\(3x + 1 + \sqrt {9{x^2} - 12x + 1} \ge 3\sqrt {3x} \)

\( \Leftrightarrow 6x + 2 + 2\sqrt {9{x^2} - 12x + 1} \)\( - 6\sqrt {3x} \ge 0\)

\( \Leftrightarrow 6x - 5\sqrt {3x} + 2\)\( + \left( {2\sqrt {9{x^2} - 12x + 1} - \sqrt {3x} } \right) \ge 0\)

\( \Leftrightarrow 2.{\left( {\sqrt {3x} } \right)^2} - 5.\sqrt {3x} + 2\)\( + \dfrac{{36{x^2} - 51x + 4}}{{2\sqrt {9{x^2} - 12x + 1} + \sqrt {3x} }} \ge 0\)

\( \Leftrightarrow \left( {\sqrt {3x} - 2} \right)\left( {2\sqrt {3x} - 1} \right)\)\( + \dfrac{{\left( {3x - 4} \right)\left( {12x - 1} \right)}}{{2\sqrt {9{x^2} - 12x + 1} + \sqrt {3x} }} \ge 0\)

\( \Leftrightarrow \dfrac{{\left( {3x - 4} \right)\left( {12x - 1} \right)}}{{\left( {\sqrt {3x} + 2} \right)\left( {2\sqrt {3x} + 1} \right)}}\)\( + \dfrac{{\left( {3x - 4} \right)\left( {12x - 1} \right)}}{{2\sqrt {9{x^2} - 12x + 1} + \sqrt {3x} }} \ge 0\)

\( \Leftrightarrow \left( {3x - 4} \right)\left( {12x - 1} \right) \ge 0\) (1)

Vì \(\dfrac{1}{{\left( {\sqrt {3x} + 2} \right)\left( {2\sqrt {3x} + 1} \right)}} + \dfrac{1}{{2\sqrt {9{x^2} - 12x + 1} + \sqrt {3x} }} > 0\)

(1)\( \Leftrightarrow \left[ \begin{array}{l}x \ge \dfrac{4}{3}\\x \le \dfrac{1}{{12}}\end{array} \right.\)kết hơp với điều kiện ta được: \(\left[ \begin{array}{l}x \ge 2 + \sqrt 3 \\0 \le x \le \dfrac{1}{{12}}\end{array} \right.\)

Vậy \(S = \left[ {0;\dfrac{1}{{12}}} \right] \cup \left[ {2 + \sqrt 3 ; + \infty } \right)\).

Đáp án - Lời giải

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

Giải đề thi học kì 2 toán lớp 10 năm 2019 - 2020 trường THCS & THPT Nguyễn Tất Thành Giải đề thi học kì 2 toán lớp 10 năm 2019 - 2020 trường THCS & THPT Nguyễn Tất Thành

Giải chi tiết đề thi học kì 2 môn toán lớp 10 năm 2019 - 2020 trường THCS & THPT Nguyễn Tất Thành với cách giải nhanh và chú ý quan trọng

Xem chi tiết
Giải đề thi học kì 2 toán lớp 10 năm 2019 - 2020 trường THPT Yên Mỹ - Hưng Yên Giải đề thi học kì 2 toán lớp 10 năm 2019 - 2020 trường THPT Yên Mỹ - Hưng Yên

Giải chi tiết đề thi học kì 2 môn toán lớp 10 năm 2019 - 2020 trường THPT Yên Mỹ - Hưng Yên với cách giải nhanh và chú ý quan trọng

Xem chi tiết
Giải đề thi học kì 2 toán lớp 10 năm 2019 - 2020 trường THPT Yên Hòa - Hà Nội Giải đề thi học kì 2 toán lớp 10 năm 2019 - 2020 trường THPT Yên Hòa - Hà Nội

Giải chi tiết đề thi học kì 2 môn toán lớp 10 năm 2019 - 2020 trường THPT Yên Hòa - Hà Nội với cách giải nhanh và chú ý quan trọng

Xem chi tiết
Giải đề thi học kì 2 toán lớp 10 năm 2019 - 2020 trường THPT Phú Lương - Thái Nguyên Giải đề thi học kì 2 toán lớp 10 năm 2019 - 2020 trường THPT Phú Lương - Thái Nguyên

Giải chi tiết đề thi học kì 2 môn toán lớp 10 năm 2019 - 2020 trường THPT Phú Lương - Thái Nguyên với cách giải nhanh và chú ý quan trọng

Xem chi tiết
Lý thuyết các hệ thức lượng trong tam giác và giải tam giác Lý thuyết các hệ thức lượng trong tam giác và giải tam giác

Nhắc lại hệ thức lượng trong tam giác vuông.

Xem chi tiết
Lý thuyết phương trình đường Elip Lý thuyết phương trình đường Elip

Định nghĩa đường elip:

Xem chi tiết
Lý thuyết tích vô hướng của hai vectơ Lý thuyết tích vô hướng của hai vectơ

1. Định nghĩa

Xem chi tiết
Lý thuyết phương trình đường thẳng Lý thuyết phương trình đường thẳng

Vectơ chỉ phương của đường thẳng

Xem chi tiết

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay

Gửi bài