60 bài tập giới hạn của hàm số

Làm đề thi

Câu hỏi 1 :

 Giá trị của \(\underset{x\to 1}{\mathop{\lim }}\,\left( 3{{x}^{2}}-2x+1 \right)\) bằng:

  • A  \(+\infty .\)                             
  • B  \(2.\)                                       
  • C  \(1.\)                                       
  • D  \(3.\)

Đáp án: B

Phương pháp giải:

Với \(f\left( x \right)\) là hàm đa thức ta có: \(\underset{x\to {{x}_{o}}}{\mathop{\lim }}\,f\left( x \right)=f\left( {{x}_{o}} \right).\)

Lời giải chi tiết:

\(\underset{x\to 1}{\mathop{\lim }}\,\left( 3{{x}^{2}}-2x+1 \right)={{3.1}^{2}}-2.1+1=2.\)

Chọn B

Đáp án - Lời giải

Câu hỏi 2 :

Tính \(\mathop {\lim }\limits_{x \to  - 1} \left( {{x^2} - x + 7} \right)\) bằng?

  • A \(5\).                                   
  • B  \(7.\)                                  
  • C \(9.\)                                   
  • D \(6.\) 

Đáp án: C

Phương pháp giải:

Hàm số \(y = f\left( x \right)\) xác định tại \(x = {x_0}\) thì \(\mathop {\lim }\limits_{x \to {x_0}}  = f\left( {{x_0}} \right)\)

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to  - 1} \left( {{x^2} - x + 7} \right) = {( - 1)^2} - ( - 1) + 7 = 9.\)

Chọn: C.

Đáp án - Lời giải

Câu hỏi 3 :

Tìm \(\mathop {\lim }\limits_{x \to  + \infty } \dfrac{{2x + 1}}{{x - 1}}.\)

  • A 2
  • B 3
  • C -1
  • D 1

Đáp án: A

Phương pháp giải:

Chia cả tử và mẫu cho \(x\) và dùng tính chất của giới hạn để tính giới hạn.

Lời giải chi tiết:

Ta có \(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{2x + 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{2 + \dfrac{1}{x}}}{{1 - \dfrac{1}{x}}} = \dfrac{{\mathop {\lim }\limits_{x \to  + \infty } \left( {2 + \dfrac{1}{x}} \right)}}{{\mathop {\lim }\limits_{x \to  + \infty } \left( {1 - \dfrac{1}{x}} \right)}} = 2.\)

Chọn A.

Đáp án - Lời giải

Câu hỏi 4 :

Tính \(\mathop {\lim }\limits_{x \to {3^ + }} \frac{{\left| {x - 3} \right|}}{{3x - 9}}\) bằng?

  • A \( - \frac{1}{3}.\)                
  • B \(0.\)                                   
  • C \(\frac{1}{3}.\)                                        
  • D Không tồn tại. 

Đáp án: C

Phương pháp giải:

- Phá dấu giá trị tuyệt đối.

- Rút gọn phân thức.

- Khử dạng \(\frac{0}{0}\). 

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to {3^ + }} \frac{{\left| {x - 3} \right|}}{{3x - 9}} = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{x - 3}}{{3x - 9}} = \mathop {\lim }\limits_{x \to {3^ + }} \frac{1}{3} = \frac{1}{3}.\)

Chọn: C.

Đáp án - Lời giải

Câu hỏi 5 :

Tính \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{3{x^2} - 2x - 1}}{{{x^2} + 1}}\)bằng?

  • A \(-3.\)                                       
  • B    \(-2.\)                            
  • C \(2.\)                                 
  • D \(3.\)

Đáp án: D

Phương pháp giải:

- Chia cả tử và mẫu cho \({x^2}\).

- Thay giới hạn \(\mathop {\lim }\limits_{x \to \infty } \frac{C}{{{x^n}}} = 0,\,\,\,n \in {N^*}\).

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to  - \infty } \frac{{3{x^2} - 2x - 1}}{{{x^2} + 1}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{3 - \frac{2}{x} - \frac{1}{{{x^2}}}}}{{1 + \frac{1}{{{x^2}}}}} = \frac{3}{1} = 3.\)

Chọn: D.

Đáp án - Lời giải

Câu hỏi 6 :

Tính giới hạn: \(I=\underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,\frac{2-x}{x+1}.\)

  • A \(I=+\infty \)                           
  • B \(I=-1\)                                    
  • C \(I=-\infty \)                           
  • D  \(I=1\)

Đáp án: C

Phương pháp giải:

Sử dụng các quy tắc tính giới hạn một phía.

Lời giải chi tiết:

Ta có: \(I=\underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,\frac{2-x}{x+1}\)

Ta thấy \(\underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,\left( 2-x \right)=3>0,\,\,\underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,\left( x+1 \right)=0,\,\,x\to {{\left( -1 \right)}^{-}}\Rightarrow x<-1\Leftrightarrow x+1<0\Rightarrow I=-\infty \)

Chọn C.


Đáp án - Lời giải

Câu hỏi 7 :

Tính \(\underset{x\to 5}{\mathop{\lim }}\,\frac{{{x}^{2}}-12x+35}{25-5x}.\)

  • A \(\frac{2}{5}\)                                   
  • B  \(-\frac{2}{5}\)                                               
  • C \(-\infty \)                                               
  • D \(+\infty \)

Đáp án: A

Phương pháp giải:

Sử dụng các quy tắc tính giá trị của hàm số để tính. Tính giới hạn của hàm số dạng: \(\frac{0}{0}\) ta phân tích tử số thành nhân tử chung sau đó rút gọn với mẫu số để triệt tiêu dạng \(\frac{0}{0}\) rồi thay giá trị \(x=5\) vào để tính giới hạn của hàm số cần tính.

Lời giải chi tiết:

Ta có: \(\underset{x\to 5}{\mathop{\lim }}\,\frac{{{x}^{2}}-12x+35}{25-5x}=\underset{x\to 5}{\mathop{\lim }}\,\frac{\left( x-7 \right)\left( x-5 \right)}{5\left( 5-x \right)}=\underset{x\to 5}{\mathop{\lim }}\,\frac{7-x}{5}=\frac{7-5}{5}=\frac{2}{5}.\)

Chọn A.

Đáp án - Lời giải

Câu hỏi 8 :

Giới hạn của hàm số \(\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} + 2x}  - x} \right)\) bằng bao nhiêu

  • A 0
  • B 2
  • C \( + \infty \)      
  • D 1

Đáp án: D

Phương pháp giải:

Nhân cả tử và mẫu với biểu thức liên hợp của tử sau đó chia cả tử và mẫu cho x mũ bậc cao nhất của cả tử và mẫu, sử dụng giới hạn \(\mathop {\lim }\limits_{x \to \infty } {1 \over {{n^\alpha }}} = 0\,\,\left( {\alpha  > 0} \right)\)

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} + 2x}  - x} \right) = \mathop {\lim }\limits_{x \to  + \infty } {{{x^2} + 2x - {x^2}} \over {\sqrt {{x^2} + 2x}  + x}} = \mathop {\lim }\limits_{x \to  + \infty } {{2x} \over {\sqrt {{x^2} + 2x}  + x}} = \mathop {\lim }\limits_{x \to  + \infty } {2 \over {\sqrt {1 + {2 \over x}}  + 1}} = 1\)

Chọn D.

Đáp án - Lời giải

Câu hỏi 9 :

 Biết \(\underset{x\to 3}{\mathop{\lim }}\,\frac{\sqrt{2x+3}-3}{x-3}=\frac{a}{b}\), trong đó a, b là số nguyên dương và phân số \(\frac{a}{b}\) là tối giản.  Tính giá trị biểu thức\(P={{a}^{2}}+{{b}^{2}}.\)

  • A  \(P=10.\)                                
  • B  \(P=13.\)                                
  • C \(P=7.\)                       
  • D \(P=40.\)

Đáp án: A

Phương pháp giải:

- Nhân liên hợp, tính giới hạn hàm số.

Lời giải chi tiết:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 3} \frac{{\sqrt {2x + 3}  - 3}}{{x - 3}} = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {\sqrt {2x + 3}  - 3} \right)\left( {\sqrt {2x + 3}  + 3} \right)}}{{\left( {x - 3} \right)\left( {\sqrt {2x + 3}  + 3} \right)}} = \mathop {\lim }\limits_{x \to 3} \frac{{2x - 6}}{{\left( {x - 3} \right)\left( {\sqrt {2x + 3}  + 3} \right)}} = \mathop {\lim }\limits_{x \to 3} \frac{2}{{\sqrt {2x + 3}  + 3}} = \frac{2}{{\sqrt {2.3 + 3}  + 3}} = \frac{1}{3}\\ \Rightarrow \left\{ \begin{array}{l}a = 1\\b = 3\end{array} \right. \Rightarrow P = {a^2} + {b^2} = {1^2} + {3^2} = 10\end{array}\)

Chọn: A.

Đáp án - Lời giải

Câu hỏi 10 :

Tính \(\mathop {\lim }\limits_{x \to 2} \sqrt {\frac{{{x^4} + 3x - 1}}{{2{x^2} - 1}}} \)bằng?

  • A \(3.\)                                           
  • B   B. \(\sqrt 3 .\)                                   
  • C   \(-3.\)                                      
  • D \(\frac{1}{3}.\)

Đáp án: B

Phương pháp giải:

Hàm số \(y = f\left( x \right)\) xác định tại \(x = {x_0}\) thì \(\mathop {\lim }\limits_{x \to {x_0}}  = f\left( {{x_0}} \right)\)

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to 2} \sqrt {\frac{{{x^4} + 3x - 1}}{{2{x^2} - 1}}}  = \sqrt {\frac{{{2^4} + 3.2 - 1}}{{{{2.2}^2} - 1}}}  = \sqrt {\frac{{16 + 6 - 1}}{{8 - 1}}}  = \sqrt 3 .\)

Chọn: B.

Đáp án - Lời giải

Câu hỏi 11 :

Tính \(L=\underset{x\,\to \,+\,\infty }{\mathop{\lim }}\,\frac{3{{x}^{4}}-2x+3}{5{{x}^{4}}+3x+1}.\)

  • A  \(L=\frac{3}{5}.\)        
  • B   \(L=+\,\infty .\) 
  • C \(L=3.\)                
  • D \(L=0.\)

Đáp án: A

Phương pháp giải:

Chia cả tử và mẫu cho \({{x}^{4}}\) và sử dụng giới hạn: \(\underset{x\to \infty }{\mathop{\lim }}\,\frac{1}{{{x}^{n}}}=0\,\,\left( n>0 \right)\)

Lời giải chi tiết:

Ta có \(L=\underset{x\,\to \,+\,\infty }{\mathop{\lim }}\,\frac{3{{x}^{4}}-2x+3}{5{{x}^{4}}+3x+1}=\underset{x\,\to \,+\,\infty }{\mathop{\lim }}\,\frac{3-\frac{2}{{{x}^{3}}}+\frac{3}{{{x}^{4}}}}{5+\frac{3}{{{x}^{3}}}+\frac{1}{{{x}^{4}}}}=\frac{3}{5}.\)

Chọn A.

Đáp án - Lời giải

Câu hỏi 12 :

\(\underset{x\to -\infty }{\mathop{\lim }}\,\frac{2x+1}{x-3}\) bằng

  • A

     \(-\frac{2}{3}\).                                 

  • B

     \(1.\)                                       

  • C

     2.                                           

  • D  \(-\frac{1}{3}\).

Đáp án: C

Phương pháp giải:

Chia cả tử và mẫu cho x và sử dụng giới hạn \(\underset{x\to \infty }{\mathop{\lim }}\,\frac{1}{{{x}^{n}}}=0\,\,\left( n>0 \right)\)

Lời giải chi tiết:

\(\underset{x\to -\infty }{\mathop{\lim }}\,\frac{2x+1}{x-3}=\underset{x\to -\infty }{\mathop{\lim }}\,\frac{2+\frac{1}{x}}{1-\frac{3}{x}}=\frac{2}{1}=2\).

Chọn: C

Đáp án - Lời giải

Câu hỏi 13 :

Giới hạn \(\underset{x\to -2}{\mathop{\lim }}\,\frac{x+1}{{{\left( x+2 \right)}^{2}}}\) bằng: 

  • A \(-\infty .\)
  • B  \(\frac{3}{16}.\) 
  • C \(0.\)
  • D  \(+\infty .\)

Đáp án: A

Phương pháp giải:

 Sử dụng công thức tính giới hạn của hàm số. 

Lời giải chi tiết:

 Ta có: \(\underset{x\to -2}{\mathop{\lim }}\,\frac{x+1}{{{\left( x+2 \right)}^{2}}}=\underset{x\to -2}{\mathop{\lim }}\,\frac{-2+1}{{{\left( -2+2 \right)}^{2}}}=-\infty .\)

Chọn A.

Đáp án - Lời giải

Câu hỏi 14 :

 Tính \(L=\underset{x\to 1}{\mathop{\lim }}\,\frac{{{x}^{2}}+3x-4}{x-1}\). 

  • A \(L=-5\). 
  • B \(L=0\). 
  • C \(L=-3\). 
  • D \(L=5\).

Đáp án: D

Phương pháp giải:

 Bấm máy hoặc rút gọn phân số đưa về giới hạn hữu hạn 

Lời giải chi tiết:

 Ta có \(L=\underset{x\to 1}{\mathop{\lim }}\,\frac{{{x}^{2}}+3x-4}{x-1}=\underset{x\to 1}{\mathop{\lim }}\,\frac{\left( x-1 \right)\left( x+4 \right)}{x-1}=\underset{x\to 1}{\mathop{\lim }}\,\left( x+4 \right)=5\).

Chọn D


Đáp án - Lời giải

Câu hỏi 15 :

\(\underset{x\to -\infty }{\mathop{\lim }}\,\frac{-1}{2x+5}\) bằng

  • A  \(0.\)                           
  • B  \(+\infty .\)                
  • C  \(-\infty .\)                 

     

  • D  \(-\frac{1}{2}\)

Đáp án: A

Đáp án - Lời giải

Câu hỏi 16 :

\(\mathop {\lim }\limits_{x \to  - \infty } \frac{{x + 1}}{{\sqrt {{x^2} - 1} }}\) bằng:

  • A

     \( - 1\)                                             

  • B

     \( - \infty \)                                                

  • C

     \(0\)                                     

  • D  \(1\)

Đáp án: A

Phương pháp giải:

Chia cả tử và mẫu cho x.

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to  - \infty } \frac{{x + 1}}{{\sqrt {{x^2} - 1} }} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{1 + \frac{1}{x}}}{{ - \sqrt {1 - \frac{1}{{{x^2}}}} }} =  - 1\)

Chọn A.

Đáp án - Lời giải

Câu hỏi 17 :

 Giá trị của \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{2x - 1}}{{\sqrt {{x^2} + 1}  - 1}}\) bằng

  • A  \(0.\)    
  • B \(-2.\) 
  • C \(-\infty .\)         
  • D \(2.\)

Đáp án: B

Phương pháp giải:

Bấm máy tính hoặc liên hợp đưa về hàm đồng bậc (chia) để tìm giới hạn

Lời giải chi tiết:

Ta có \(\mathop {\lim }\limits_{x \to  - \,\infty } \frac{{2x - 1}}{{\sqrt {{x^2} + 1}  - 1}} = \mathop {\lim }\limits_{x \to  - \,\infty } \frac{{\left( {2x - 1} \right)\left( {\sqrt {{x^2} + 1}  + 1} \right)}}{{{x^2} + 1 - 1}} = \mathop {\lim }\limits_{x \to  - \,\infty } \frac{{\left( {2x - 1} \right)\left( {\sqrt {{x^2} + 1}  + 1} \right)}}{{{x^2}}}\)

\(\begin{array}{l} = \mathop {\lim }\limits_{x \to  - \,\infty } \frac{{x\left( {2 - \frac{1}{x}} \right)\left( {\left| x \right|\sqrt {1 + \frac{1}{{{x^2}}}}  + 1} \right)}}{{{x^2}}} = \mathop {\lim }\limits_{x \to  - \,\infty } \frac{{\left( {2 - \frac{1}{x}} \right)\left( { - \,x\sqrt {1 + \frac{1}{{{x^2}}}}  + 1} \right)}}{x}\\ = \mathop {\lim }\limits_{x \to  - \,\infty } \left( {2 - \frac{1}{x}} \right)\left( { - \,\sqrt {1 + \frac{1}{{{x^2}}}}  + \frac{1}{x}} \right) =  - \,2.\end{array}\)

Chọn B

Đáp án - Lời giải

Câu hỏi 18 :

Tính \(\underset{x\to +\infty }{\mathop{\lim }}\,\frac{\sqrt{x+1}}{{{x}^{2018}}-1}\).

  • A

    \(-1\).                             

  • B  \(1\).                                                                 
  • C    \(2\).                   
  • D \(0\)

Đáp án: D

Phương pháp giải:

Bấm máy hoặc nhận thấy bậc tử nhỏ hơn bậc mẫu nên giới hạn dần đến 0

Lời giải chi tiết:

Ta có \(\underset{x\to +\infty }{\mathop{\lim }}\,\frac{\sqrt{x+1}}{{{x}^{2018}}-1}=\underset{x\to +\infty }{\mathop{\lim }}\,\frac{1}{{{x}^{2017}}}.\frac{\sqrt{\frac{1}{x}+\frac{1}{{{x}^{2}}}}}{1-\frac{1}{{{x}^{2017}}}}=0\).

Chọn D

Đáp án - Lời giải

Câu hỏi 19 :

Tính \(\mathop {\lim }\limits_{x \to 3} \frac{{\sqrt {x + 1}  - 2}}{{\sqrt {3x}  - 3}}\) bằng?

  • A \(\frac{2}{3}.\)                                  
  • B  \(\frac{1}{3}.\)                                    
  • C \(\frac{1}{2}.\)                                 
  • D \(1.\) 

Đáp án: C

Phương pháp giải:

- Nhân liên hợp để khử dạng \(\frac{0}{0}\). 

Lời giải chi tiết:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 3} \frac{{\sqrt {x + 1}  - 2}}{{\sqrt {3x}  - 3}} = \mathop {\lim }\limits_{x \to 3} \frac{{(\sqrt {x + 1}  - 2)(\sqrt {x + 1}  + 2)(\sqrt {3x}  + 3)}}{{(\sqrt {3x}  - 3)(\sqrt {3x}  + 3)(\sqrt {x + 1}  + 2)}} = \mathop {\lim }\limits_{x \to 3} \frac{{(x + 1 - 4)(\sqrt {3x}  + 3)}}{{(3x - 9)(\sqrt {x + 1}  + 2)}}\\ = \mathop {\lim }\limits_{x \to 3} \frac{{(x - 3)(\sqrt {3x}  + 3)}}{{3(x - 3)(\sqrt {x + 1}  + 2)}} = \mathop {\lim }\limits_{x \to 3} \frac{{\sqrt {3x}  + 3}}{{3(\sqrt {x + 1}  + 2)}} = \frac{{\sqrt {3.3}  + 3}}{{3(\sqrt {3 + 1}  + 2)}} = \frac{1}{2}\end{array}\)

 

Chọn: C.

Đáp án - Lời giải

Câu hỏi 20 :

Tính \(\mathop {\lim }\limits_{x \to 2} \dfrac{{x - \sqrt {x + 2} }}{{\sqrt {4x + 1}  - 3}}\)bằng?

  • A \(\frac{1}{2}.\)                  
  • B \(\frac{9}{8}.\)                                       
  • C \(1.\)                            
  • D \(\frac{3}{4}.\)

Đáp án: B

Phương pháp giải:

- Nhân liên hợp để khử dạng \(\frac{0}{0}\). 

Lời giải chi tiết:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 2} \frac{{x - \sqrt {x + 2} }}{{\sqrt {4x + 1}  - 3}} = \mathop {\lim }\limits_{x \to 2} \frac{{(x - \sqrt {x + 2} )(x + \sqrt {x + 2} )(\sqrt {4x + 1}  + 3)}}{{(\sqrt {4x + 1}  - 3)(\sqrt {4x + 1}  + 3)(x + \sqrt {x + 2} )}} = \mathop {\lim }\limits_{x \to 2} \frac{{({x^2} - x - 2)(\sqrt {4x + 1}  + 3)}}{{(4x + 1 - 9)(x + \sqrt {x + 2} )}}\\= \mathop {\lim }\limits_{x \to 2} \frac{{(x + 1)(x - 2)(\sqrt {4x + 1}  + 3)}}{{4(x - 2)(x + \sqrt {x + 2} )}} = \mathop {\lim }\limits_{x \to 2} \frac{{(x + 1)(\sqrt {4x + 1}  + 3)}}{{4(x + \sqrt {x + 2} )}} = \frac{{(2 + 1)(\sqrt {4.2 + 1}  + 3)}}{{4(2 + \sqrt {2 + 2} )}} = \frac{9}{8}\end{array}\)

 

Chọn: B.

Đáp án - Lời giải

Câu hỏi 21 :

Tính \(\mathop {\lim }\limits_{x \to 0} \frac{{1 - \sqrt[3]{{x + 1}}}}{{3x}}\)bằng?

  • A \( - \frac{1}{3}.\)                             
  • B    \(0.\)                                       
  • C \(\frac{1}{3}.\)                                     
  • D \(\frac{{ - 1}}{9}.\)  

Đáp án: D

Phương pháp giải:

- Nhân liên hợp để khử dạng \(\frac{0}{0}\). 

Lời giải chi tiết:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 0} \frac{{1 - \sqrt[3]{{x + 1}}}}{{3x}} = \mathop {\lim }\limits_{x \to 0} \frac{{(1 - \sqrt[3]{{x + 1}})\left( {1 + \sqrt[3]{{x + 1}} + {{\left( {\sqrt[3]{{x + 1}}} \right)}^2}} \right)}}{{3x\left( {1 + \sqrt[3]{{x + 1}} + {{\left( {\sqrt[3]{{x + 1}}} \right)}^2}} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{{1 - (x + 1)}}{{3x\left( {1 + \sqrt[3]{{x + 1}} + {{\left( {\sqrt[3]{{x + 1}}} \right)}^2}} \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{ - x}}{{3x\left( {1 + \sqrt[3]{{x + 1}} + {{\left( {\sqrt[3]{{x + 1}}} \right)}^2}} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{{ - 1}}{{3\left( {1 + \sqrt[3]{{x + 1}} + {{\left( {\sqrt[3]{{x + 1}}} \right)}^2}} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{{ - 1}}{{3\left( {1 + \sqrt[3]{{0 + 1}} + {{\left( {\sqrt[3]{{0 + 1}}} \right)}^2}} \right)}} = \frac{{ - 1}}{9}\end{array}\)

 

Chọn: D.

Đáp án - Lời giải

Câu hỏi 22 :

Cho hàm số \(f\left( x \right)\) và \(g\left( x \right)\) có \(\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f\left( x \right)=L,\,\,\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g\left( x \right)=M.\) Khẳng định nào sau đây là đúng?

  • A \(\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\left| f\left( x \right)+g\left( x \right) \right|=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\left| f\left( x \right) \right|+\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\left| g\left( x \right) \right|\)            
  • B  \(\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\left| f\left( x \right)+g\left( x \right) \right|=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\left[ f\left( x \right)+g\left( x \right) \right]\)
  • C   \(\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\left| f\left( x \right)+g\left( x \right) \right|=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f\left( x \right)+\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g\left( x \right)\)                                
  • D \(\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\left| f\left( x \right)+g\left( x \right) \right|=\left| \underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\left[ f\left( x \right)+g\left( x \right) \right] \right|\)

Đáp án: D

Phương pháp giải:

Suy luận trực tiếp từ các đáp án.

Lời giải chi tiết:

Ta có : \(\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\left| f\left( x \right)+g\left( x \right) \right|=\left| \underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\left[ f\left( x \right)+g\left( x \right) \right] \right|=\left| \underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f\left( x \right)+\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g\left( x \right) \right|=\left| L+M \right|\)

Chọn D.

 

Đáp án - Lời giải

Câu hỏi 23 :

Cho hàm số \(f\left( x \right)=\left\{ \begin{align}  & \frac{\sqrt{x+4}-2}{x}\,\,\,\,\,khi\,\,x>0 \\  & mx+m+\frac{1}{4}\,\,\,\,khi\,\,x\le 0 \\ \end{align} \right.\) , m là tham số. Tìm giá trị của tham số m để hàm số có giới hạn tại x = 0.

  • A \(m=-\frac{1}{2}\)                            
  • B  \(m=1\)                                  
  • C  m = 0               
  • D \(m=\frac{1}{2}\)

Đáp án: C

Phương pháp giải:

Để hàm số có giới hạn tại x = 0 thì \(\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f\left( x \right)\).

Lời giải chi tiết:

\(\begin{align}  & \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\frac{\sqrt{x+4}-2}{x}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\frac{x+4-4}{x\left( \sqrt{x+4}+2 \right)}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\frac{1}{\sqrt{x+4}+2}=\frac{1}{\sqrt{4}+2}=\frac{1}{4} \\  & \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left( mx+m+\frac{1}{4} \right)=m+\frac{1}{4} \\ \end{align}\)

Để hàm số có giới hạn tại x = 0 thì \(\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f\left( x \right)\Leftrightarrow \frac{1}{4}=m+\frac{1}{4}\Leftrightarrow m=0.\)

Chọn C.

Đáp án - Lời giải

Câu hỏi 24 :

Giới hạn của hàm số \(f(x) = {{1 - \root 3 \of {1 - x} } \over x}\) khi  x  tiến đến 0  bằng bao nhiêu

  • A 0
  • B \({1 \over 3}\)
  • C 1
  • D \({1 \over 9}\)

Đáp án: B

Phương pháp giải:

Nhân cả tử và mẫu với biểu thức liên hợp của tử để khử dạng vô định \({0 \over 0}\)

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} {{1 - \root 3 \of {1 - x} } \over x} = \mathop {\lim }\limits_{x \to 0} {{1 - \left( {1 - x} \right)} \over {x\left( {1 + \root 3 \of {1 - x}  + {{\root 3 \of {1 - x} }^2}} \right)}} = \mathop {\lim }\limits_{x \to 0} {1 \over {1 + \root 3 \of {1 - x}  + {{\root 3 \of {1 - x} }^2}}} = {1 \over {1 + 1 + 1}} = {1 \over 3}\)

Chọn B.

Đáp án - Lời giải

Câu hỏi 25 :

Giới hạn \(\underset{x\to 2}{\mathop{\lim }}\,\dfrac{\sqrt{x+2}-2}{x-2}\) bằng: 

  • A \(\dfrac{1}{2}\)
  • B  \(\dfrac{1}{4}\)
  • C 0
  • D 1

Đáp án: B

Phương pháp giải:

Nhân cả tử và mẫu với biểu thức liên hợp của tử để khử dạng \(\dfrac{0}{0}\).

Lời giải chi tiết:

\(\underset{x\to 2}{\mathop{\lim }}\,\dfrac{\sqrt{x+2}-2}{x-2}=\underset{x\to 2}{\mathop{\lim }}\,\dfrac{x+2-4}{\left( x-2 \right)\left( \sqrt{x+2}+2 \right)}\) \(=\underset{x\to 2}{\mathop{\lim }}\,\dfrac{1}{\sqrt{x+2}+2}=\dfrac{1}{4}\)

Chọn B.

Đáp án - Lời giải

Câu hỏi 26 :

Cho hai số thực \(a\) và \(b\) thỏa mãn \(\mathop {\lim }\limits_{x \to  + \,\infty } \left( {\frac{{4{x^2} - 3x + 1}}{{2x + 1}} - ax - b} \right) = 0\). Khi đó \(a + 2b\) bằng:

  • A  \( - 4\)                                
  • B  \( - 5\)                                
  • C  \(4\)                                   
  • D  \( - 3\)

Đáp án: D

Phương pháp giải:

Quy đồng, đưa về dạng phân thức, khi giới hạn bằng 0 khi bậc tử nhỏ hơn bậc mẫu mà bậc mẫu bằng 1 nên bậc tử phải bằng 0, tức là hệ số của bậc 2 – bậc 1 trên tử đều bằng 0

Lời giải chi tiết:

Ta có \(\frac{{4{x^2} - 3x + 1}}{{2x + 1}} - ax - b = \frac{{4{x^2} - 3x + 1 - \left( {2x + 1} \right)\left( {ax + b} \right)}}{{2x + 1}} = \frac{{\left( {4 - 2a} \right){x^2} - \left( {a + 2b + 3} \right)x + 1 - b}}{{2x + 1}}\)

Để \(\mathop {\lim }\limits_{x \to  + \,\infty } \left( {\frac{{4{x^2} - 3x + 1}}{{2x + 1}} - ax - b} \right) = \mathop {\lim }\limits_{x \to  + \,\infty } \frac{{\left( {4 - 2a} \right){x^2} - \left( {a + 2b + 3} \right)x + 1 - b}}{{2x + 1}} = 0 \Leftrightarrow \left\{ \begin{array}{l}4 - 2a = 0\\a + 2b + 3 = 0\end{array} \right.\).

Vậy \(a + 2b =  - \,3.\)

Chọn D

Đáp án - Lời giải

Câu hỏi 27 :

 Tính \(\lim L = \mathop {\lim }\limits_{x \to {2^ - }} \left( {\frac{1}{{x - 2}} - \frac{1}{{{x^2} - 4}}} \right)\).

  • A  Không tồn tại L                      
  • B  \(L =  + \infty \)                             
  • C  \(L = 0\)                               
  • D  \(L =  - \infty \)

Đáp án: D

Phương pháp giải:

Sử dụng quy tắc tính giới hạn \(\frac{L}{0}\).

Lời giải chi tiết:

\(\lim L = \mathop {\lim }\limits_{x \to {2^ - }} \left( {\frac{1}{{x - 2}} - \frac{1}{{{x^2} - 4}}} \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {\frac{{x + 2 - 1}}{{{x^2} - 4}}} \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {\frac{{x + 1}}{{{x^2} - 4}}} \right) =  - \infty \)

(Vì \(\mathop {\lim }\limits_{x \to {2^ - }} \left( {x + 1} \right) = 3 > 0;\,\,\mathop {\lim }\limits_{x \to {2^ - }} \left( {{x^2} - 4} \right) = 0;\,\,x \to {2^ - } \Rightarrow {x^2} - 4 < 0\))

Chọn D.

Đáp án - Lời giải

Câu hỏi 28 :

Tính  \(\mathop {\lim }\limits_{x \to  + \infty } \dfrac{{1 + 3x}}{{\sqrt {2{x^2} + 3} }}\)

  • A \(\dfrac{{\sqrt 2 }}{2}\).        
  • B  \( - \dfrac{{3\sqrt 2 }}{2}\)   
  • C \( - \dfrac{{\sqrt 2 }}{2}\)
  • D  \(\dfrac{{3\sqrt 2 }}{2}\)

Đáp án: D

Phương pháp giải:

Chia cả tử và mẫu cho x mũ cao nhất.

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to  + \infty } \dfrac{{1 + 3x}}{{\sqrt {2{x^2} + 3} }} = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\dfrac{1}{x} + 3}}{{\sqrt {2 + \dfrac{3}{{{x^2}}}} }} = \dfrac{3}{{\sqrt 2 }} = \dfrac{{3\sqrt 2 }}{2}\).

Chọn: D

Đáp án - Lời giải

Câu hỏi 29 :

Tính \(\mathop {\lim }\limits_{x \to  - \infty } \left( {\sqrt {4{x^2} + 8x + 1}  + 2x} \right)\) bằng

  • A \(0\)                                                     
  • B  \( + \infty \).                             
  • C  \( - 2\)                                          
  • D  \( - \infty \)

Đáp án: C

Phương pháp giải:

Nhân và chia thêm biểu thức liên hợp của biểu thức \(\sqrt {4{x^2} + 8x + 1}  + 2x\).

Lời giải chi tiết:

\(\begin{array}{l}\,\,\,\,\,\,\mathop {\lim }\limits_{x \to  - \infty } \left( {\sqrt {4{x^2} + 8x + 1}  + 2x} \right)\\ = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\left( {\sqrt {4{x^2} + 8x + 1}  + 2x} \right)\left( {\sqrt {4{x^2} + 8x + 1}  - 2x} \right)}}{{\sqrt {4{x^2} + 8x + 1}  - 2x}}\\ = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{8x + 1}}{{\sqrt {4{x^2} + 8x + 1}  - 2x}}\\ = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{8 + \dfrac{1}{x}}}{{ - \sqrt {4 + \dfrac{8}{x} + \dfrac{1}{{{x^2}}}}  - 2}} = \dfrac{8}{{ - 2 - 2}} =  - 2.\end{array}\)

Chọn: C

Đáp án - Lời giải

Câu hỏi 30 :

Giới hạn \(\mathop {\lim }\limits_{x \to  - \infty } \left( {{x^3} - 4{x^5} + 2x + 1} \right)\) bằng :

  • A \( + \infty \)
  • B \( - \infty \)
  • C \(1\)
  • D \( - 4\)

Đáp án: A

Phương pháp giải:

Đặt \(x\) với số mũ cao nhất ra ngoài.

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to  - \infty } \left( {{x^3} - 4{x^5} + 2x + 1} \right) = \mathop {\lim }\limits_{x \to  - \infty } {x^5}\left( { - 4 + \dfrac{1}{{{x^2}}} + \dfrac{2}{{{x^4}}} + \dfrac{1}{{{x^5}}}} \right) =  + \infty \).

Chọn A.

Đáp án - Lời giải

Câu hỏi 31 :

Trong các giới hạn dưới đây, giới hạn nào là \( + \infty \)?

  • A \(\mathop {\lim }\limits_{x \to {4^ - }} \dfrac{{2x - 1}}{{4 - x}}.\)
  • B \(\mathop {\lim }\limits_{x \to  + \infty } \left( { - {x^3} + 2x + 3} \right).\)
  • C \(\mathop {\lim }\limits_{x \to  - \infty } \dfrac{{{x^2} + x + 1}}{{x - 1}}.\)
  • D \(\mathop {\lim }\limits_{x \to {4^ + }} \dfrac{{2x - 1}}{{4 - x}}.\)

Đáp án: A

Phương pháp giải:

Khi \(x \to \infty \), chia cả tử và mẫu cho \(x\) với số mũ là số mũ cao nhất của tử và mẫu.

Khi x tiến ra hữu hạn, xét dấu tử và mẫu sau đó kết luận.

Lời giải chi tiết:

Xét đáp án A ta có \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {4^ - }} \left( {2x - 1} \right) = 7 > 0\\\mathop {\lim }\limits_{x \to {4^ - }} \left( {x - 4} \right) = 0\\x < 4 \Rightarrow 4 - x > 0\end{array} \right.\).

\( \Rightarrow \mathop {\lim }\limits_{x \to {4^ - }} \dfrac{{2x - 1}}{{4 - x}} =  + \infty \).

Chọn A.

Đáp án - Lời giải

Câu hỏi 32 :

Giới hạn của \(I = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 5x + 4}}{{{x^2} - 1}}\) bằng

  • A \( - \frac{1}{2}\)  
  • B \( - \frac{3}{2}\)
  • C \( - \frac{1}{4}\)
  • D \( - \frac{1}{3}\) 

Đáp án: B

Phương pháp giải:

+) Phân tích thành nhân tử và rút gọn \(\frac{{{x^2} - 5x + 4}}{{{x^2} - 1}} = \frac{{\left( {x - 1} \right)\left( {x - 4} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{x - 4}}{{x + 1}}\) để khử dạng  \(\frac{0}{0}\)  rồi tính giới hạn của biểu thức.

Lời giải chi tiết:

Ta có \(I = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {x - 4} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 4} \right)}}{{\left( {x + 1} \right)}} = \frac{{1 - 4}}{{1 + 1}} =  - \frac{3}{2}\)

Chọn B.

Đáp án - Lời giải

Câu hỏi 33 :

Giới hạn \(\mathop {\lim }\limits_{x \to 2} \left( {\frac{1}{{3{x^2} - 4x - 4}} + \frac{1}{{{x^2} - 12x + 20}}} \right)\) là một phân số tối giản \(\frac{a}{b}\left( {b > 0} \right)\). Khi đó giá trị của \(b - a\)  bằng:

  • A \(15\)
  • B \(16\)
  • C \(18\)
  • D \(17\)

Đáp án: D

Phương pháp giải:

Tính \(\mathop {\lim }\limits_{x \to 2} \left( {\frac{1}{{3{x^2} - 4x - 4}} + \frac{1}{{{x^2} - 12x + 20}}} \right)\) bằng cách phân tích:

\(\begin{array}{l}\frac{1}{{3{x^2} - 4x - 4}} + \frac{1}{{{x^2} - 12x + 20}} = \frac{1}{{\left( {x - 2} \right)\left( {3x + 2} \right)}} + \frac{1}{{\left( {x - 2} \right)\left( {x - 10} \right)}}\\ = \frac{{x - 10 + 3x + 2}}{{\left( {x - 2} \right)\left( {3x + 2} \right)\left( {x - 10} \right)}} = \frac{{4\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {3x + 2} \right)\left( {x - 10} \right)}} = \frac{4}{{\left( {3x + 2} \right)\left( {x - 10} \right)}}.\end{array}\)

Lời giải chi tiết:

Ta có :  \(\frac{1}{{3{x^2} - 4x - 4}} + \frac{1}{{{x^2} - 12x + 20}} = \frac{1}{{\left( {x - 1} \right)\left( {3x + 2} \right)}} + \frac{1}{{\left( {x - 2} \right)\left( {x - 10} \right)}}\)

            \( = \frac{{x - 10 + 3x + 2}}{{\left( {x - 2} \right)\left( {3x + 2} \right)\left( {x - 10} \right)}} = \frac{{4\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {3x + 2} \right)\left( {x - 10} \right)}} = \frac{4}{{\left( {3x + 2} \right)\left( {x - 10} \right)}}\)

Do đó:  \(\mathop {\lim }\limits_{x \to 2} \left( {\frac{1}{{3{x^2} - 4x - 4}} + \frac{1}{{{x^2} - 12x + 20}}} \right) = \mathop {\lim }\limits_{x \to 2} \frac{4}{{\left( {3x + 2} \right)\left( {x - 10} \right)}} = \frac{4}{{\left( {3.2 + 2} \right)\left( {2 - 10} \right)}} = \frac{{ - 1}}{{16}}.\)

Vậy theo bài ra thì \(a =  - 1,\,\,b = 16\) nên  \(b - a = 17.\)

Chọn D.

Đáp án - Lời giải

Câu hỏi 34 :

Cho hàm số  \(f\left( x \right) = \frac{{{x^2} + 1}}{{2\sqrt x }},\,\,\,\,\mathop {\lim }\limits_{x \to 3} f\left( x \right)\) bằng:

  • A \( + \infty \)
  • B \(0\)
  • C \(\frac{{5\sqrt 3 }}{3}\)  
  • D \(\frac{1}{2}\)

Đáp án: C

Phương pháp giải:

Cách 1: Thay \(x = 3\) vào để tính giới hạn của hàm số.

Cách 2:

+) Giải sử \({x_n}\)  là một dãy số bất kỳ, thỏa mãn \({x_n} > 0,\,{x_n} \ne 3\)  và \({x_n} \to 3\)  khi \(n \to  + \infty \).

+) Tính \(\mathop {\lim }\limits_{n \to \infty } f\left( {{x_n}} \right)\).

Lời giải chi tiết:

Hàm số đã cho xác định trên \(\left( {0; + \infty } \right)\) .

Cách 1:  \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \mathop {\lim }\limits_{x \to 3} \frac{{{x^2} + 1}}{{2\sqrt x }} = \frac{{{3^2} + 1}}{{2\sqrt 3 }} = \frac{{5\sqrt 3 }}{3}.\)

Cách 2: Giải sử \({x_n}\)  là một dãy số bất kỳ, thỏa mãn \({x_n} > 0,\,\;\;{x_n} \ne 3\)  và \({x_n} \to 3\)  khi \(n \to  + \infty \). Ta có \(\mathop {\lim }\limits_{n \to \infty } f\left( {{x_n}} \right) = \lim \frac{{{x_n}^2 + 1}}{{2\sqrt {{x_n}} }} = \frac{{{3^2} + 1}}{{2\sqrt 3 }} = \frac{{5\sqrt 3 }}{3}\) (áp dụng quy tắc về giới hạn hữu hạn của dãy số).

Do đó:  \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \frac{{5\sqrt 3 }}{3}.\)

Chọn C.

Đáp án - Lời giải

Câu hỏi 35 :

Chọn khẳng định đúng trong các khẳng định sau:

  • A \(\mathop {\lim }\limits_{x \to \infty } \sin x = 1\)
  • B \(\mathop {\lim }\limits_{x \to \infty } \sin x =  - 1\)  
  • C \(\mathop {\lim }\limits_{x \to \infty } \sin x = 0\)
  • D \(\mathop {\lim }\limits_{x \to \infty } \sin x\)   không tồn tại

Đáp án: D

Phương pháp giải:

Sử dụng các tính chất của dãy số \({u_n} = \sin x\) để chứng minh sự tồn tại của giới hạn.

Lời giải chi tiết:

 Xét dãy số \(\left( {{x_n}} \right)\) với  \({x_n} = \frac{\pi }{2} + 2n\pi \) .

Ta có \({x_n} \to  + \infty \)  và  \(\mathop {\lim }\limits_{x \to \infty } \sin {x_n} = \mathop {\lim }\limits_{} \sin \left( {\frac{\pi }{2} + 2n\pi } \right) = 1\,.\,\,\,\,\left( 1 \right)\)

Lại xét dãy số \({y_n}\) với \({y_n} =  - \frac{\pi }{2} + 2n\pi \)

Ta có \({y_n} \to  + \infty \)  và  \(\mathop {\lim }\limits_{x \to \infty } \sin {y_n} = \mathop {\lim }\limits_{} \sin \left( { - \frac{\pi }{2} + 2n\pi } \right) =  - 1\,.\,\,\,\,\left( 1 \right)\)

Từ (1) và (2) suy ra  \(\mathop {\lim }\limits_{x \to  + \infty } \sin x\)   không tồn tại.

Chọn D.

Đáp án - Lời giải

Câu hỏi 36 :

Giá trị \(\mathop {\lim }\limits_{x \to  - \infty } \left( { - 2{x^3} + 5x} \right)\) bằng:

  • A \(-2\)
  • B \(3\)
  • C \( + \infty \)
  • D \( - \infty \) .

Đáp án: C

Phương pháp giải:

Biến đổi \( - 2{x^3} + 5x = {x^3}\left( { - 2 + \frac{5}{{{x^2}}}} \right).\)

Lời giải chi tiết:

Ta có:  \(\mathop {\lim }\limits_{x \to  - \infty } \left( { - 2{x^3} + 5x} \right) = \mathop {\lim }\limits_{x \to  - \infty } {x^3}\left( { - 2 + \frac{5}{{{x^2}}}} \right) =  + \infty .\)

Vì: \(\mathop {\lim }\limits_{x \to  - \infty } {x^3} =  - \infty ;\;\;\mathop {\lim }\limits_{x \to  - \infty } \left( { - 2 + \frac{5}{{{x^2}}}} \right) =  - 2.\)

Chọn C.

Đáp án - Lời giải

Câu hỏi 37 :

\(\mathop {\lim }\limits_{x \to {3^ + }} \dfrac{{4x - 3}}{{x - 3}}\)có kết quả là: 

  • A \(9\)                                
  • B \(0\)
  • C \( - \infty \)
  • D \( + \infty \)

Đáp án: D

Phương pháp giải:

Xét dấu tử và mẫu và kết luận.

Lời giải chi tiết:

\(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {3^ + }} \left( {4x - 3} \right) = 4.3 - 3 = 9\\\mathop {\lim }\limits_{x \to {3^ + }} \left( {x - 3} \right) = 0\\x \to {3^ + } \Rightarrow x - 3 > 0\end{array} \right. \Rightarrow \mathop {\lim }\limits_{x \to {3^ + }} \dfrac{{4x - 3}}{{x - 3}} =  + \infty \).

Chọn D.

Đáp án - Lời giải

Câu hỏi 38 :

Tính  \(\mathop {\lim }\limits_{x \to 2} \sqrt {2x - 3} \).

  • A \(1\)                               
  • B \( + \infty \)                             
  • C \(0\)                                      
  • D \(2\)

Đáp án: A

Phương pháp giải:

Hàm số \(y = f\left( x \right)\) liên tục tại \(x = {x_0} \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).

Lời giải chi tiết:

Xét hàm số \(y = \sqrt {2x - 3} \) có TXĐ \(D = \left[ {\dfrac{3}{2}; + \infty } \right) \Rightarrow \) Hàm số liên tục trên \(\left( {\dfrac{3}{2}; + \infty } \right)\).

\( \Rightarrow \) Hàm số \(y = \sqrt {2x - 3} \) liên tục tại \(x = 2\).

\( \Rightarrow \mathop {\lim }\limits_{x \to 2} \sqrt {2x - 3}  = \sqrt {2.2 - 3}  = 1\).

Chọn A.

Đáp án - Lời giải

Câu hỏi 39 :

\(\mathop {\lim }\limits_{x \to 1} \dfrac{{x + \sqrt {{x^2} + 1} }}{{x + 1}} = a + b\sqrt 2 \,\,\left( {a,b \in \mathbb{Q}} \right).\) Tính \(a + b\).

  • A \(1.\)
  • B \(2.\)
  • C \(5.\)
  • D \(0\)

Đáp án: A

Phương pháp giải:

Hàm số \(y = f\left( x \right)\) liên tục tại \(x = {x_0} \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).

Lời giải chi tiết:

Hàm số \(y = \dfrac{{x + \sqrt {{x^2} + 1} }}{{x + 1}}\) có TXĐ: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\} \Rightarrow \) Hàm số liên tục tại \(x = 1\).

\(\begin{array}{l} \Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{x + \sqrt {{x^2} + 1} }}{{x + 1}} = \dfrac{{1 + \sqrt {{1^2} + 1} }}{{1 + 1}} = \dfrac{{1 + \sqrt 2 }}{2} = \dfrac{1}{2} + \dfrac{1}{2}\sqrt 2 \\ \Rightarrow \left\{ \begin{array}{l}a = \dfrac{1}{2}\\b = \dfrac{1}{2}\end{array} \right. \Rightarrow a + b = \dfrac{1}{2} + \dfrac{1}{2} = 1\end{array}\)

Chọn A.

Đáp án - Lời giải

Câu hỏi 40 :

Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( { - 2;2} \right)\); \(f\left( 1 \right) = 0\) và \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = 0\). Tìm khẳng định sai?

  • A \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = 0\)                                              
  • B \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\)
  • C Hàm số gián đoạn tại \(x = 1\)                                         
  • D \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = 0\)

Đáp án: C

Phương pháp giải:

Hàm số \(y = f\left( x \right)\) liên tục tại điểm \(x = {x_0} \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).

Lời giải chi tiết:

Ta có: \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right) = 0\)  nên hàm số liên tục tại \(x = 1\).

Vậy khẳng định C sai.

Chọn C.

Đáp án - Lời giải

Câu hỏi 41 :

Cho \(\mathop {\lim }\limits_{x \to  + \infty } \dfrac{{ax + 3}}{{2 - 3x}} = 2\) với \(a\) là một số thựHãy tìm \(a\).

  • A \(a = 4\)                                  
  • B \(a =  - 6\)                               
  • C \(a =  - 5\)                               
  • D \(a = 6\)

Đáp án: B

Phương pháp giải:

Chia cả tử và mẫu cho \(x\).

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to  + \infty } \dfrac{{ax + 3}}{{2 - 3x}} = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{a + \dfrac{3}{x}}}{{\dfrac{2}{x} - 3}} = \dfrac{a}{{ - 3}} = 2 \Leftrightarrow a =  - 6\).

Chọn B.

Đáp án - Lời giải

Câu hỏi 42 :

Giới hạn \(\mathop {\lim }\limits_{x \to 2018} \dfrac{{{x^2} - 2019x + 2018}}{{x - 2018}}\)  bằng

  • A  \(2020\)                                             
  • B  \(2017\)                                             
  • C  \(2019\)                                             
  • D  \(2018\)

Đáp án: B

Phương pháp giải:

Phân tích tử thức thành nhân tử để khử dạng vô định

Lời giải chi tiết:

Ta có \(\mathop {\lim }\limits_{x \to 2018} \dfrac{{{x^2} - 2019x + 2018}}{{x - 2018}} = \mathop {\lim }\limits_{x \to 2018} \dfrac{{\left( {x - 2018} \right)\left( {x - 1} \right)}}{{x - 2018}} = \mathop {\lim }\limits_{x \to 2018} \left( {x - 1} \right) = 2018 - 1 = 2017\)

Chọn B.

Đáp án - Lời giải

Câu hỏi 43 :

\(\mathop {\lim }\limits_{x \to {3^ - }} \dfrac{1}{{x - 3}}\) bằng:

  • A \( - \dfrac{1}{6}\)
  • B \( - \infty \)
  • C \(0\)
  • D

    \( + \infty \)

Đáp án: B

Phương pháp giải:

Sử dụng xét dấu để tính giới hạn dạng \(\dfrac{L}{0}\).

Lời giải chi tiết:

Ta có \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {3^ - }} 1 = 1\\\mathop {\lim }\limits_{x \to {3^ - }} \left( {x - 3} \right) = 0,\,\,x \to {3^ - } \Rightarrow x - 3 < 0\end{array} \right. \Rightarrow \mathop {\lim }\limits_{x \to {3^ - }} \dfrac{1}{{x - 3}} =  - \infty \).

Chọn B.

Đáp án - Lời giải

Câu hỏi 44 :

 Tính giới hạn \(\mathop {\lim }\limits_{x \to  - \infty } \left( {{x^4} + 2{x^2} + 1} \right)\) :

  • A  \(0\)
  • B \( + \infty \)
  • C \( - \infty \)
  • D

    \(1\)

Đáp án: B

Phương pháp giải:

Đặt \(x\) mũ cao nhất ra ngoài.

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to  - \infty } \left( {{x^4} + 2{x^2} + 1} \right) = \mathop {\lim }\limits_{x \to  - \infty } {x^4}\left( {1 + \dfrac{2}{{{x^2}}} + \dfrac{1}{{{x^4}}}} \right) =  + \infty \).

Chọn B

Đáp án - Lời giải

Câu hỏi 45 :

Biết \(\mathop {\lim }\limits_{x \to  - \infty } \dfrac{{x + 2}}{{1 - 2x}} =  - \dfrac{a}{b}\) ( a, b là hai số tự nhiên và \(\dfrac{a}{b}\) tối giản). Giá trị của \(a - b\) bằng

  • A \(3.\)
  • B \( - 1.\)
  • C \( - 3.\)
  • D \(1.\)

Đáp án: B

Phương pháp giải:

Chia cả tử và mẫu cho \(x\).

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to  - \infty } \dfrac{{x + 2}}{{1 - 2x}} = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{1 + \dfrac{2}{x}}}{{\dfrac{1}{x} - 2}} =  - \dfrac{1}{2} \Rightarrow \left\{ \begin{array}{l}a = 1\\b = 2\end{array} \right. \Rightarrow a - b =  - 1\).

Chọn B.

Đáp án - Lời giải

Câu hỏi 46 :

Tính giá trị   \(\mathop {\lim }\limits_{x \to  + \infty } \left( {x + 5} \right)\sqrt {\frac{x}{{{x^3} - 1}}} \)          có kết quả là?

  • A \(0\)
  • B \(1\)
  • C \( + \infty \)      
  • D \(2\)

Đáp án: B

Phương pháp giải:

Đưa \(\left( {x + 5} \right)\) vào trong dấu căn sau đó sử dụng công thức tính giới hạn của hàm số để tính.

Lời giải chi tiết:

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } \left( {x + 5} \right)\sqrt {\frac{x}{{{x^3} - 1}}}  = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {\frac{{x{{\left( {x + 5} \right)}^2}}}{{{x^3} - 1}}}  = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {\frac{{{x^3} + 10{x^2} + 25x}}{{{x^3} - 1}}}  = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {\frac{{1 + \frac{{10}}{x} + \frac{{25}}{{{x^2}}}}}{{1 - \frac{1}{{{x^3}}}}}}  = 1\)

Chọn B.

Đáp án - Lời giải

Câu hỏi 47 :

Giới hạn của hàm số nào dưới đây có kết quả bằng 1?

  • A \(\mathop {\lim }\limits_{x \to  - 1} \dfrac{{{x^2} + 3x + 2}}{{x + 1}}\)
  • B \(\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^2} + 3x + 2}}{{1 - x}}\)
  • C \(\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^2} + 3x + 2}}{{x + 2}}\)
  • D \(\mathop {\lim }\limits_{x \to  - 1} \dfrac{{{x^2} + 4x + 3}}{{x + 1}}\)

Đáp án: A

Phương pháp giải:

+) Nếu tại \(x = {x_0}\), hàm số đang ở dạng \(\dfrac{0}{0}\): Phân tích, rút gọn để khử dạng \(\dfrac{0}{0}\).

+) Nếu hàm số liên tục tại \(x = {x_0} \Rightarrow \mathop {\lim }\limits_{x \to \infty } f\left( x \right) = f\left( {{x_0}} \right)\).

Lời giải chi tiết:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to  - 1} \dfrac{{{x^2} + 3x + 2}}{{x + 1}} = \mathop {\lim }\limits_{x \to  - 1} \dfrac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to  - 1} \left( {x + 2} \right) = 1\\\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^2} + 3x + 2}}{{1 - x}} = \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{1 - x}} = \infty \\\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^2} + 3x + 2}}{{x + 2}} = \dfrac{6}{3} = 2\\\mathop {\lim }\limits_{x \to  - 1} \dfrac{{{x^2} + 4x + 3}}{{x + 1}} = \mathop {\lim }\limits_{x \to  - 1} \dfrac{{\left( {x + 1} \right)\left( {x + 3} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to  - 1} \left( {x + 3} \right) = 2\end{array}\)

Chọn A.

Đáp án - Lời giải

Câu hỏi 48 :

Tính \(\lim \dfrac{{7{x^3} - 3{x^5} - 11}}{{{x^5} + {x^3} - 3x}}\) bằng:

  • A \( - 3\)                                     
  • B \(0\)                                        
  • C \(7\)                                        
  • D \( + \infty \)

Đáp án: A

Phương pháp giải:

Chia cả tử và mẫu cho \({x^5}\).

Lời giải chi tiết:

\(\lim \dfrac{{7{x^3} - 3{x^5} - 11}}{{{x^5} + {x^3} - 3x}} = \lim \dfrac{{\dfrac{7}{{{x^2}}} - 3 - \dfrac{{11}}{{{x^5}}}}}{{1 + \dfrac{1}{{{x^2}}} - \dfrac{3}{{{x^4}}}}} = \dfrac{{ - 3}}{1} =  - 3\).

Chọn A.

Đáp án - Lời giải

Câu hỏi 49 :

Tìm m sao cho  \(C = 2\) với  \(C = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - mx + m - 1}}{{{x^2} - 1}}\).

  • A \(m = 2\)          
  • B \(m =  - 2\)
  • C \(m = 1\)          
  • D \(m =  - 1\)

Đáp án: B

Phương pháp giải:

Biến đổi: \(\frac{{{x^2} - mx + m - 1}}{{{x^2} - 1}} = \frac{{\left( {x - 1} \right)\left( {x + 1} \right) - m\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{x + 1 - m}}{{x + 1}}\)

Lời giải chi tiết:

Ta có: \(C = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {x + 1} \right) - m\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{x + 1 - m}}{{x + 1}} = \frac{{2 - m}}{2}\)

mà  \(C = 2 \Leftrightarrow \frac{{2 - m}}{2} = 2 \Leftrightarrow 2 - m = 4 \Leftrightarrow m =  - 2.\)

Chọn B.

Đáp án - Lời giải

Câu hỏi 50 :

Tính giới hạn \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + \left| {x - 1} \right| - 1}}{{x - 1}}\) có kết quả là : 

  • A \(3\)
  • B \(1\)
  • C \(2\)
  • D \(0\)

Đáp án: A

Phương pháp giải:

Với  \(x > 1 \Rightarrow \left| {x - 1} \right| = x - 1,\)  bỏ dấu giá trị tuyệt đối và biến đổi biểu thức để tính giá trị biểu thức.

Lời giải chi tiết:

Ta có: \(x \to {1^ + } \Rightarrow x > 1 \Rightarrow \left| {x - 1} \right| = x - 1.\) Khi đó:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + \left| {x - 1} \right| - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + \left( {x - 1} \right) - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + x - 2}}{{x - 1}}\\ = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\left( {x - 1} \right)\left( {x + 2} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 2} \right) = 3.\end{array}\)

Chọn A.

Đáp án - Lời giải

Câu hỏi 51 :

Tính giới hạn  \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {4{x^2} - 2x + 1}  - \sqrt {1 - 2x} }}{x}\) có kết quả là:

  • A \(2\)
  • B \(-2\)
  • C \(-1\)
  • D \(0\)

Đáp án: D

Phương pháp giải:

Thêm bớt, nhân liên hợp và rút gọn biểu thức để khử dạng  \(\frac{0}{0}\)  rồi tính giới hạn của biểu thức.

\(\begin{array}{l}\frac{{\sqrt {4{x^2} - 2x + 1}  - \sqrt {1 - 2x} }}{x} = \frac{{\sqrt {4{x^2} - 2x + 1}  - 1}}{x} - \frac{{\sqrt {1 - 2x}  - 1}}{x}\\ = \frac{{\left( {\sqrt {4{x^2} - 2x + 1}  - 1} \right)\left( {\sqrt {4{x^2} - 2x + 1}  + 1} \right)}}{{x\left( {\sqrt {4{x^2} - 2x + 1}  + 1} \right)}} - \frac{{\left( {\sqrt {1 - 2x}  - 1} \right)\left( {\sqrt {1 - 2x}  + 1} \right)}}{{x\left( {\sqrt {1 - 2x}  + 1} \right)}}\\ = \frac{{4{x^2} - 2x}}{{x\left( {\sqrt {4{x^2} - 2x + 1}  + 1} \right)}} + \frac{{2x}}{{x\left( {\sqrt {1 - 2x}  + 1} \right)}} = \frac{{4x - 2}}{{\sqrt {4{x^2} - 2x + 1}  + 1}} + \frac{2}{{\sqrt {1 - 2x}  + 1}}.\end{array}\)

Lời giải chi tiết:

Ta có: \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {4{x^2} - 2x + 1}  - \sqrt {1 - 2x} }}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {4{x^2} - 2x + 1}  - 1}}{x} - \mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 - 2x}  - 1}}{x}\)

       \(\begin{array}{l} = \mathop {\lim }\limits_{x \to 0} \frac{{4{x^2} - 2x}}{{x\left( {\sqrt {4{x^2} - 2x + 1}  + 1} \right)}} + \mathop {\lim }\limits_{x \to 0} \frac{{2x}}{{x\left( {\sqrt {1 - 2x}  + 1} \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{4x - 2}}{{\sqrt {4{x^2} - 2x + 1}  + 1}} + \mathop {\lim }\limits_{x \to 0} \frac{2}{{\sqrt {1 - 2x}  + 1}} =  - 1 + 1 = 0.\end{array}\)

Chọn D.

Đáp án - Lời giải

Câu hỏi 52 :

Giới hạn \(\mathop {\lim }\limits_{x \to {a^ - }} \dfrac{1}{{x - a}}\) bằng:

  • A \( + \infty \)
  • B \(0\)
  • C \(\dfrac{{ - 1}}{{2a}}\)            
  • D \( - \infty \)

Đáp án: D

Phương pháp giải:

Xét giới hạn dạng \(\dfrac{L}{0}\).

Lời giải chi tiết:

Khi \(x \to {a^ - }\) ta có \(x < a \Rightarrow x - a < 0 \Rightarrow \mathop {\lim }\limits_{x \to {a^ - }} \dfrac{1}{{x - a}} =  - \infty \).

Chọn D.

Đáp án - Lời giải

Câu hỏi 53 :

\(\mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\sqrt {{x^2} + 2018} }}{{x + 1}}\) bằng

  • A \( - 1.\)
  • B \(1.\)
  • C \( - \infty .\)
  • D \( - 2018.\)

Đáp án: A

Phương pháp giải:

Chia cả tử và mẫu cho \(x\).

Lời giải chi tiết:

Ta có

\(\mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\sqrt {{x^2} + 2018} }}{{x + 1}} = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\sqrt {{x^2}\left( {1 + \dfrac{{2018}}{{{x^2}}}} \right)} }}{{x + 1}} = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\left| x \right|\sqrt {1 + \dfrac{{2018}}{{{x^2}}}} }}{{x + 1}} \\= \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{ - x\sqrt {1 + \dfrac{{2018}}{{{x^2}}}} }}{{x + 1}} = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{ - \sqrt {1 + \dfrac{{2018}}{{{x^2}}}} }}{{1 + \dfrac{1}{x}}} =  - 1\)

Chọn A.

Đáp án - Lời giải

Câu hỏi 54 :

Cho \(f\left( x \right)\) là một đa thức thỏa mãn  \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - 16}}{{x - 1}} = 24.\) Tính  \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - 16}}{{\left( {x - 1} \right)\left( {\sqrt {2f\left( x \right) + 4}  + 6} \right)}}\)có kết quả là:

  • A \(I = 24\)          
  • B \(I =  + \infty \)            
  • C \(I = 2\)            
  • D \(I = 0\)

Đáp án: C

Phương pháp giải:

Chọn hàm  \(f\left( x \right) - 16 = 24\left( {x - 1} \right) \Rightarrow f\left( x \right) = 24x - 8 \Rightarrow f\left( 1 \right) = 16.\)

Lời giải chi tiết:

Chọn \(f\left( x \right) - 16 = 24\left( {x - 1} \right) \Rightarrow f\left( x \right) = 24x - 8 \Rightarrow f\left( 1 \right) = 16.\)

\(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - 16}}{{\left( {x - 1} \right)\left( {\sqrt {2f\left( x \right) + 4}  + 6} \right)}} = \frac{{24}}{{\sqrt {2.16 + 4}  + 6}} = 2.\)

Chọn C.

Đáp án - Lời giải

Câu hỏi 55 :

Tính giá trị  \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt[3]{{x + 7}} - \sqrt {{x^2} + x + 2} }}{{x - 1}}\) có kết quả là:

  • A \(\frac{1}{{12}}\)      
  • B \( + \infty \)
  • C \(\frac{{ - 3}}{2}\)     
  • D \(\frac{{ - 2}}{3}\)

Đáp án: D

Phương pháp giải:

Nhân liên hợp để khử dạng  \(\frac{0}{0}\)  rồi tính giới hạn của biểu thức.

\(\begin{array}{l}\frac{{\sqrt[3]{{x + 7}} - \sqrt {{x^2} + x + 2} }}{{x - 1}} = \frac{{\sqrt[3]{{x + 7}} - 2}}{{x - 1}} - \frac{{\sqrt[{}]{{{x^2} + x + 2}} - 2}}{{x - 1}}\\ = \frac{{\left( {\sqrt[3]{{x + 7}} - 2} \right)\left( {\sqrt[3]{{{{\left( {x + 7} \right)}^2}}} + 2\sqrt[3]{{x + 7}} + 4} \right)}}{{\left( {x - 1} \right)\left( {\sqrt[3]{{{{\left( {x + 7} \right)}^2}}} + 2\sqrt[3]{{x + 7}} + 4} \right)}} - \frac{{\left( {\sqrt[{}]{{{x^2} + x + 2}} - 2} \right)\left( {\sqrt[{}]{{{x^2} + x + 2}} + 2} \right)}}{{\left( {x - 1} \right)\left( {\sqrt[{}]{{{x^2} + x + 2}} + 2} \right)}}\\ = \frac{{x + 7 - 8}}{{\left( {x - 1} \right)\left( {\sqrt[3]{{{{\left( {x + 7} \right)}^2}}} + 2\sqrt[3]{{x + 7}} + 4} \right)}} - \frac{{{x^2} + x + 2 - 4}}{{\left( {x - 1} \right)\left( {\sqrt[{}]{{{x^2} + x + 2}} + 2} \right)}}\\ = \frac{{x - 1}}{{\left( {x - 1} \right)\left( {\sqrt[3]{{{{\left( {x + 7} \right)}^2}}} + 2\sqrt[3]{{x + 7}} + 4} \right)}} - \frac{{\left( {x - 1} \right)\left( {x + 2} \right)}}{{\left( {x - 1} \right)\left( {\sqrt[{}]{{{x^2} + x + 2}} + 2} \right)}}\\ = \frac{1}{{\sqrt[3]{{{{\left( {x + 7} \right)}^2}}} + 2\sqrt[3]{{\left( {x + 7} \right)}} + 4}} - \frac{{x + 2}}{{\sqrt[{}]{{{x^2} + x + 2}} + 2}}\end{array}\)

Lời giải chi tiết:

Ta có:    \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt[3]{{x + 7}} - \sqrt {{x^2} + x + 2} }}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt[3]{{x + 7}} - 2}}{{x - 1}} - \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt[{}]{{{x^2} + x + 2}} - 2}}{{x - 1}}\)

             \( = \mathop {\lim }\limits_{x \to 1} \frac{1}{{\sqrt[3]{{{{\left( {x + 7} \right)}^2}}} + 2\sqrt[3]{{\left( {x + 7} \right)}} + 4}} - \mathop {\lim }\limits_{x \to 1} \frac{{x + 2}}{{\sqrt[{}]{{{x^2} + x + 2}} + 2}} = \frac{1}{{12}} - \frac{3}{4} =  - \frac{2}{3}.\)

Chọn D.

Đáp án - Lời giải

Câu hỏi 56 :

 Cho hàm số \(y=f(x)\) có đạo hàm tại \({{x}_{0}}=-2\). Kết quả \(\underset{x\to -2}{\mathop{\lim }}\,\frac{2f(x)+xf(-2)}{x+2}\) là

 

  • A  \(2f'(-2)-f(-2)\).                   
  • B   \(f(-2)-2f'(-2)\).                 
  • C     \(f'(-2)\).                               
  • D  \(2f'(-2)+f(-2)\).

Đáp án: D

Phương pháp giải:

Đạo hàm của hàm số \(y=f(x)\) tại điểm \({{x}_{0}}\):   \(\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f(x)-f\left( {{x}_{0}} \right)}{x-{{x}_{0}}}\) .

Lời giải chi tiết:

\(\underset{x\to -2}{\mathop{\lim }}\,\frac{2f(x)+xf(-2)}{x+2}=\underset{x\to -2}{\mathop{\lim }}\,\frac{2\left( f(x)-f\left( -2 \right) \right)+\left( x+2 \right)f(-2)}{x+2}=2\underset{x\to -2}{\mathop{\lim }}\,\frac{f(x)-f\left( -2 \right)}{x+2}+f(-2)=2f'(-2)+f(-2)\)

Chọn: D

Đáp án - Lời giải

Câu hỏi 57 :

Biết \(\mathop {\lim }\limits_{x \to 1} \dfrac{{\sqrt {2{x^2} + 8}  - \sqrt {11 - x} }}{{x - 1}} = \dfrac{{\sqrt a }}{{2\sqrt b }}\) , với \(\dfrac{a}{b}\) là phân số tối giản. Giá trị của \(P = a + b\)

  • A \(5\)   
  • B \(7\)
  • C \(9\)
  • D \(4\)  

Đáp án: B

Phương pháp giải:

Thêm bớt \(\sqrt {10} \) vào tử thức rồi sử dụng phương pháp nhân liên hợp để khử dạng vô định.

Lời giải chi tiết:

Ta có \(\mathop {\lim }\limits_{x \to 1} \dfrac{{\sqrt {2{x^2} + 8}  - \sqrt {11 - x} }}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \dfrac{{\sqrt {2{x^2} + 8}  - \sqrt {10}  - \left( {\sqrt {11 - x}  - \sqrt {10} } \right)}}{{x - 1}}\)

\( = \mathop {\lim }\limits_{x \to 1} \left( {\dfrac{{\sqrt {2{x^2} + 8}  - \sqrt {10} }}{{x - 1}} - \dfrac{{\sqrt {11 - x}  - \sqrt {10} }}{{x - 1}}} \right)\) \( = \mathop {\lim }\limits_{x \to 1} \left( {\dfrac{{\left( {\sqrt {2{x^2} + 8}  - \sqrt {10} } \right)\left( {\sqrt {2{x^2} + 8}  + \sqrt {10} } \right)}}{{\left( {x - 1} \right)\left( {\sqrt {2{x^2} + 8}  + \sqrt {10} } \right)}} - \dfrac{{\left( {\sqrt {11 - x}  - \sqrt {10} } \right)\left( {\sqrt {11 - x}  + \sqrt {10} } \right)}}{{\left( {x - 1} \right)\left( {\sqrt {11 - x}  + \sqrt {10} } \right)}}} \right)\)

\( = \mathop {\lim }\limits_{x \to 1} \left( {\dfrac{{2{x^2} + 8 - 10}}{{\left( {x - 1} \right)\left( {\sqrt {2{x^2} + 8}  + \sqrt {10} } \right)}} - \dfrac{{11 - x - 10}}{{\left( {x - 1} \right)\left( {\sqrt {11 - x}  + \sqrt {10} } \right)}}} \right)\)

\( = \mathop {\lim }\limits_{x \to 1} \left( {\dfrac{{2\left( {{x^2} - 1} \right)}}{{\left( {x - 1} \right)\left( {\sqrt {2{x^2} + 8}  + \sqrt {10} } \right)}} - \dfrac{{1 - x}}{{\left( {x - 1} \right)\left( {\sqrt {11 - x}  + \sqrt {10} } \right)}}} \right)\)

\( = \mathop {\lim }\limits_{x \to 1} \left( {\dfrac{{2\left( {x - 1} \right)\left( {x + 1} \right)}}{{\left( {x - 1} \right)\left( {\sqrt {2{x^2} + 8}  + \sqrt {10} } \right)}} + \dfrac{{x - 1}}{{\left( {x - 1} \right)\left( {\sqrt {11 - x}  + \sqrt {10} } \right)}}} \right)\)

\( = \mathop {\lim }\limits_{x \to 1} \left( {\dfrac{{2\left( {x + 1} \right)}}{{\sqrt {2{x^2} + 8}  + \sqrt {10} }} + \dfrac{1}{{\sqrt {11 - x}  + \sqrt {10} }}} \right)\)

\( = \dfrac{{2\left( {1 + 1} \right)}}{{\sqrt {{{2.1}^2} + 8}  + \sqrt {10} }} + \dfrac{1}{{\sqrt {11 - 1}  + \sqrt {10} }} = \dfrac{5}{{2\sqrt {10} }} = \dfrac{{\sqrt 5 }}{{2\sqrt 2 }}\)

Suy ra \(\dfrac{{\sqrt a }}{{2\sqrt b }} = \dfrac{{\sqrt 5 }}{{2\sqrt 2 }} \Rightarrow a = 5;b = 2 \Rightarrow a + b = 7.\)

Chọn B. 

Đáp án - Lời giải

Câu hỏi 58 :

Cho \(a,\;\,b,\,\;c\)  là các số thực khác \(0,\,\;\;3b - 2c \ne 0\). Tìm hệ thức liên hệ giữa \(a,\,\;b,\,\;c\)  để:

\(\mathop {\lim }\limits_{x \to 0} \frac{{\tan ax}}{{\sqrt {1 + bx}  - \sqrt[3]{{1 + cx}}}} = \frac{1}{2}\)

  • A \(\frac{a}{{3b - 2c}} = \frac{1}{{10}}\)      
  • B \(\frac{a}{{3b - 2c}} = \frac{1}{6}\)
  • C \(\frac{a}{{3b - 2c}} = \frac{1}{2}\)
  • D \(\frac{a}{{3b - 2c}} = \frac{1}{{12}}\)

Đáp án: D

Phương pháp giải:

Biến đổi: \(\frac{{\tan ax}}{{\sqrt {1 + bx}  - \sqrt[3]{{1 + cx}}}} = a.\frac{{\tan ax}}{{ax}}.\frac{x}{{\sqrt {1 + bx}  - \sqrt[3]{{1 + cx}}}}\)

Tính:  \(\mathop {\lim }\limits_{x \to 0} \frac{{\tan ax}}{{ax}} = \mathop {\lim }\limits_{x \to 0} \frac{{\sin ax}}{{ax.\cos ax}} = \mathop {\lim }\limits_{x \to 0} \frac{1}{{\cos ax}} = 1\)  và  \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + bx}  - \sqrt[3]{{1 + cx}}}}{x}\)

Lời giải chi tiết:

\(\frac{{\tan ax}}{{\sqrt {1 + bx}  - \sqrt[3]{{1 + cx}}}} = a.\frac{{\tan ax}}{{ax}}.\frac{x}{{\sqrt {1 + bx}  - \sqrt[3]{{1 + cx}}}}\)

Lại có:  \(\mathop {\lim }\limits_{x \to 0} \frac{{\tan ax}}{{ax}} = \mathop {\lim }\limits_{x \to 0} \frac{{\sin ax}}{{ax.\cos ax}} = \mathop {\lim }\limits_{x \to 0} \frac{1}{{\cos ax}} = 1\) ;

Xét: \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt[n]{{1 + ax}} - 1}}{x}\;\left( {a\; \ne 0;\;n \in {\mathbb{N}^*}} \right)\) .

Đặt \(\sqrt[n]{{1 + ax}} = y \Leftrightarrow {y^n} = 1 + ax \Rightarrow x = \frac{{{y^n} - 1}}{a};\,\,\mathop {\lim }\limits_{x \to 0} y = 1\)                                                                                      \(\begin{array}{l}\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt[n]{{1 + ax}} - 1}}{x} = a\mathop {\lim }\limits_{y \to 1} \frac{{y - 1}}{{{y^n} - 1}} = a\mathop {\lim }\limits_{y \to 1} \frac{{y - 1}}{{\left( {y - 1} \right)\left( {{y^{n - 1}} + ... + y + 1} \right)}} = a\mathop {\lim }\limits_{y \to 1} \frac{1}{{\left( {{y^{n - 1}} + ... + y + 1} \right)}} = \frac{a}{n}\\\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + bx}  - \sqrt[3]{{1 + cx}}}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {\sqrt {1 + bx}  - 1} \right) - \left( {\sqrt[3]{{1 + cx}} - 1} \right)}}{x} = \frac{b}{2} - \frac{c}{3} = \frac{{3b - 2c}}{6}\\ \Rightarrow \mathop {\lim }\limits_{x \to 0} \frac{{\tan ax}}{{\sqrt {1 + bx}  - \sqrt[3]{{1 + cx}}}} = \frac{{6a}}{{3b - 2c}}.\end{array}\)

Do đó hệ thức liên hệ là: \(\frac{{6a}}{{3b - 2c}} = \frac{1}{2} \Leftrightarrow \frac{a}{{3b - 2c}} = \frac{1}{{12}}\)

Chọn D.

Đáp án - Lời giải

Câu hỏi 59 :

Cho   \(m\) và \(n\)  là các số nguyên dương phân biệt. Giới hạn \(\mathop {\lim }\limits_{x \to 1} \frac{{\sin \left( {x - 1} \right)}}{{{x^m} - {x^n}}}\)   bằng:

  • A \(m - n\)           
  • B \(n - m\)           
  • C \(\frac{1}{{m - n}}\)
  • D \(\frac{1}{{n - m}}\)

Đáp án: C

Phương pháp giải:

Biến đổi dựa vào công thức:  \(\frac{{\sin \left( {x - 1} \right)}}{{{x^m} - {x^n}}} = \frac{{\sin \left( {x - 1} \right)}}{{x - 1}}.\frac{{x - 1}}{{{x^m} - {x^n}}}\)

Dùng giới hạn:

 \(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \frac{{{x^m} - {x^n}}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {{x^m} - 1} \right) - \left( {{x^n} - 1} \right)}}{{x - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {{x^{m - 1}} + {x^{m - 2}} + ... + x + 1} \right) - \left( {x - 1} \right)\left( {{x^{n - 1}} + {x^{n - 2}} + ... + x + 1} \right)}}{{x - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {{x^{m - 1}} + {x^{m - 2}} + ... + x + 1} \right) - \left( {{x^{n - 1}} + {x^{n - 2}} + ... + x + 1} \right)}}{1} = m - n.\end{array}\)

Lời giải chi tiết:

Ta có: \(\frac{{\sin \left( {x - 1} \right)}}{{{x^m} - {x^n}}} = \frac{{\sin \left( {x - 1} \right)}}{{x - 1}}.\frac{{x - 1}}{{{x^m} - {x^n}}}\).

Xét giới hạn:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \frac{{{x^m} - {x^n}}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {{x^m} - 1} \right) - \left( {{x^n} - 1} \right)}}{{x - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {{x^{m - 1}} + {x^{m - 2}} + ... + x + 1} \right) - \left( {x - 1} \right)\left( {{x^{n - 1}} + {x^{n - 2}} + ... + x + 1} \right)}}{{x - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {{x^{m - 1}} + {x^{m - 2}} + ... + x + 1} \right) - \left( {{x^{n - 1}} + {x^{n - 2}} + ... + x + 1} \right)}}{1} = m - n\end{array}\)

Mà \(\mathop {\lim }\limits_{x \to 1} \frac{{\sin \left( {x - 1} \right)}}{{x - 1}} = 1\)  nên  \(\mathop {\lim }\limits_{x \to 1} \frac{{\sin \left( {x - 1} \right)}}{{{x^m} - {x^n}}} = \frac{1}{{m - n}}\)

Chọn C.

Đáp án - Lời giải

Câu hỏi 60 :

Cho \(a\)  và \(b\)  là các số nguyên dương. Biết \(\mathop {\lim }\limits_{x \to  - \infty } \left( {\sqrt {9{x^2} + ax}  + \sqrt[3]{{27{x^3} + b{x^2} + 5}}} \right) = \frac{7}{{27}}\) , hỏi \(a\) và  \(b\) thỏa mãn hệ thức nào dưới đây?

  • A \(a + 2b = 33\)             
  • B \(a + 2b = 34\)             
  • C \(a + 2b = 35\)             
  • D \(a + 2b = 36\) 

Đáp án: B

Phương pháp giải:

Sử dụng phương pháp nhân liên hợp để tính giới hạn theo \(a,\,\,b.\) Từ đó tìm được biểu thức liên hệ giữa \(a,\,b.\) Kết hợp với điều kiện \(a,\,\,b \in {Z^ + }\) và các đáp án để chọn đáp án đúng nhất.

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to  - \infty } \left( {\sqrt {9{x^2} + ax}  + \sqrt[3]{{27{x^3} + b{x^2} + 5}}} \right) = \mathop {\lim }\limits_{x \to  - \infty } \left[ {\left( {\sqrt {9{x^2} + ax}  + 3x} \right) + \left( {\sqrt[3]{{27{x^3} + b{x^2} + 5}} - 3x} \right)} \right]\\ = \mathop {\lim }\limits_{x \to  - \infty } \left[ {\frac{{\left( {\sqrt {9{x^2} + ax}  + 3x} \right)\left( {\sqrt {9{x^2} + ax}  - 3x} \right)}}{{\sqrt {9{x^2} + ax}  - 3x}} + \frac{{\left( {\sqrt[3]{{27{x^3} + b{x^2} + 5}} - 3x} \right)\left( {\sqrt[3]{{{{\left( {27{x^3} + b{x^2} + 5} \right)}^2}}} + 3x\sqrt[3]{{27{x^3} + b{x^2} + 5}} + 9{x^2}} \right)}}{{\sqrt[3]{{{{\left( {27{x^3} + b{x^2} + 5} \right)}^2}}} + 3x\sqrt[3]{{27{x^3} + b{x^2} + 5}} + 9{x^2}}}} \right]\\ = \mathop {\lim }\limits_{x \to  - \infty } \left[ {\frac{{9{x^2} + ax - 9{x^2}}}{{\sqrt {9{x^2} + ax}  - 3x}} + \frac{{27{x^3} + b{x^2} + 5 - 27{x^3}}}{{\sqrt[3]{{{{\left( {27{x^3} + b{x^2} + 5} \right)}^2}}} + 3x\sqrt[3]{{27{x^3} + b{x^2} + 5}} + 9{x^2}}}} \right]\\ = \mathop {\lim }\limits_{x \to  - \infty } \left[ {\frac{{ax}}{{\sqrt {9{x^2} + ax}  - 3x}} + \frac{{b{x^2} + 5}}{{\sqrt[3]{{{{\left( {27{x^3} + b{x^2} + 5} \right)}^2}}} + 3x\sqrt[3]{{27{x^3} + b{x^2} + 5}} + 9{x^2}}}} \right]\\ = \mathop {\lim }\limits_{x \to  - \infty } \left[ {\frac{a}{{\left( { - \sqrt {9 + \frac{a}{x}}  - 3} \right)}} + \frac{{b + \frac{5}{{{x^2}}}}}{{\sqrt[3]{{{{\left( {27 + \frac{b}{x} + \frac{5}{{{x^2}}}} \right)}^2}}} + 3\sqrt[3]{{27 + \frac{b}{x} + \frac{5}{{{x^2}}}}} + 9}}} \right]\\ =  - \frac{a}{6} + \frac{b}{{27}} = \frac{{2b - 9a}}{{54}}.\\ \Rightarrow \frac{{2b - 9a}}{{54}} = \frac{7}{{27}} \Leftrightarrow 2b - 9a = 14\,\,\,\left( 1 \right)\end{array}\)

Kết hợp phương trình \(\left( 1 \right)\) với một trong các đáp án để tìm \(a,\,\,b \in {\mathbb{Z}^ + }\) thỏa mãn bài toán.

+) Đáp án A: Ta có hệ phương trình: \(\left\{ \begin{array}{l}a + 2b = 33\\ - 9a + 2b = 14\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{19}}{{10}}\\b = \frac{{321}}{{20}}\end{array} \right.\,\,\left( {ktm} \right) \Rightarrow \) loại đáp án A.

+) Đáp án B:  Ta có hệ phương trình: \(\left\{ \begin{array}{l}a + 2b = 34\\2b - 9a = 14\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 16\end{array} \right.\,\,\,\left( {tm} \right) \Rightarrow \)  chọn đáp án B.

Chọn B.

Đáp án - Lời giải

Xem thêm

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.