30 bài tập Tính giá trị biểu thức

Làm đề thi

Câu hỏi 1 :

Tính: \(\sqrt {16.25} \)

  • A \(20\)
  • B \(10\)
  • C \(2\sqrt {5}\)
  • D \(30\)

Đáp án: A

Lời giải chi tiết:

\(\sqrt {16.25}  = \sqrt {16} .\sqrt {25}  = 4.5 = 20\)

Đáp án - Lời giải

Câu hỏi 2 :

\(\sqrt {320.45} \)

  • A \(60\)
  • B \(75\)
  • C \(100\)
  • D \(120\)

Đáp án: D

Lời giải chi tiết:

\(\sqrt {320.45}  = \sqrt {64.5.5.9}  = \sqrt {64.25.9}  = \sqrt {64} .\sqrt {25} .\sqrt 9  = 8.5.3 = 120\)

Đáp án - Lời giải

Câu hỏi 3 :

\(\sqrt {605.5} \)

  • A \(45\)
  • B \(55\)
  • C \(50\)
  • D \(60\)

Đáp án: B

Lời giải chi tiết:

\(\sqrt {605.5}  = \sqrt {121.5.5}  = \sqrt {121.25}  = \sqrt {121} .\sqrt {25}  = 11.5 = 55\)

Đáp án - Lời giải

Câu hỏi 4 :

\(\sqrt {7,5.30} \)

  • A \(10\)
  • B \(9\)
  • C \(15\)
  • D \(25\)

Đáp án: C

Lời giải chi tiết:

\(\sqrt {7,5.30}  = \sqrt {\frac{{75}}{{10}}.3.10}  = \sqrt {75.3}  = \sqrt {25.3.3}  = \sqrt {25.9}  = 5.3 = 15\)

Đáp án - Lời giải

Câu hỏi 5 :

\(\sqrt {5,{5^2} - 3,{5^2}} \)

  • A \(3\)
  • B \(2\sqrt 3 \)
  • C \(3\sqrt 2 \)
  • D \(2\)

Đáp án: C

Lời giải chi tiết:

\(\sqrt {5,{5^2} - 3,{5^2}}  = \sqrt {(5,5 - 3,5).(5,5 + 3,5)}  = \sqrt {2.9}  = \sqrt 2 .\sqrt 9  = 3\sqrt 2 \)

Đáp án - Lời giải

Câu hỏi 6 :

\(\sqrt {196.0,81.0,36} \)

  • A \(7,36\)
  • B \(7,56\)
  • C \(9,36\)
  • D \(6,64\)

Đáp án: B

Lời giải chi tiết:

\(\sqrt {196.0,81.0,36}  = \sqrt {196} .\sqrt {0,81} .\sqrt {0,36}  = 14.0,9.0,6 = 7,56\)

Đáp án - Lời giải

Câu hỏi 7 :

\(\sqrt {0,87.49 + 0,82.49} \)

  • A \(9,1\)
  • B \(9,9\)
  • C \(10,2\)
  • D \(10,1\)

Đáp án: A

Lời giải chi tiết:

\(\sqrt {0,87.49 + 0,82.49}  = \sqrt {49.(0,87 + 0,82)}  = \sqrt {49.1,69}  = \sqrt {49} .\sqrt {1,69}  = 7.1,3 = 9,1\)

Đáp án - Lời giải

Câu hỏi 8 :

\(\sqrt {{3^2}.{{( - 7)}^2}} \)   

  • A \(15\)
  • B \(17\)
  • C \(26\)
  • D \(21\)

Đáp án: D

Lời giải chi tiết:

\(\sqrt {{3^2}.{{( - 7)}^2}}  = \sqrt 9 .\sqrt {49}  = 3.7 = 21\)

Đáp án - Lời giải

Câu hỏi 9 :

\(\sqrt {11} .\sqrt {176} \)

  • A \(37\)
  • B \(39\)
  • C \(44\)
  • D \(46\)

Đáp án: C

Lời giải chi tiết:

\(\sqrt {11} .\sqrt {176}  = \sqrt {11.176}  = \sqrt {1936}  = 44\)

Đáp án - Lời giải

Câu hỏi 10 :

\(\sqrt {\frac{3}{4}} .\sqrt {5\frac{1}{3}} \)

  • A \(\frac{1}{2}\)
  • B \(1\)
  • C \(2\)
  • D \(\frac{3}{2}\)

Đáp án: C

Lời giải chi tiết:

\(\sqrt {\frac{3}{4}} .\sqrt {5\frac{1}{3}}  = \sqrt {\frac{3}{4}.\frac{{16}}{3}}  = \sqrt 4  = 2\)

Đáp án - Lời giải

Câu hỏi 11 :

\(\sqrt {0,5.50} \)

  • A \(2\)
  • B \(5\)
  • C \(7\)
  • D \(8\)

Đáp án: B

Lời giải chi tiết:

\(\sqrt {0,5.50}  = \sqrt {\frac{5}{{10}}.5.10}  = \sqrt {5.5}  = 5\)

Đáp án - Lời giải

Câu hỏi 12 :

\(15\sqrt {20} .0,1.\sqrt {45} \)

  • A \(15\)
  • B \(25\)
  • C \(45\)
  • D \(50\)

Đáp án: C

Lời giải chi tiết:

\(15\sqrt {20} .0,1.\sqrt {45}  = 15.0,1.\sqrt {20.45}  = 1,5.\sqrt {4.5.5.9}  = 1,5.5.2.3 = 45\)

Đáp án - Lời giải

Câu hỏi 13 :

Rút gọn biểu thức \( - \sqrt {18}  + \sqrt 2 \) được kết quả là:

  • A \( - 4\)  
  • B \( - \sqrt {20} \)           
  • C \( - 2\sqrt 2 \)   
  • D \( - 4\sqrt 2 \).

Đáp án: C

Phương pháp giải:

Áp dụng quy tắc đưa thừa số ra ngoài dấu căn: \(\sqrt {{A^2}.B}  = \left| A \right|\sqrt B  = \left[ \begin{array}{l}A.B\,\,\,\,khi\,\,\,\,A \ge 0\\ - A.B\,\,\,\,\,khi\,\,\,\,A < 0\end{array} \right..\)

Lời giải chi tiết:

\( - \sqrt {18}  + \sqrt 2  =  - \sqrt {9.2}  + \sqrt 2  =  - \sqrt {{3^2}.2}  + \sqrt 2  =  - 3\sqrt 2  + \sqrt 2  =  - 2\sqrt 2 \)

Chọn C

Đáp án - Lời giải

Câu hỏi 14 :

Giá trị của biểu thức \(A = \sqrt {810.40}  + \sqrt {24} .\sqrt {12} .\sqrt {0,5} \) là:

  • A \(A = 192\)     
  • B \(A = 180\)
  • C \(A = 12\)
  • D \(A = 164\)

Đáp án: A

Phương pháp giải:

Áp dụng phép khai phương một tích nhân các căn thức bậc hai:

+ Nếu \(a \ge 0\) và \(b \ge 0\) thì \(\sqrt {a.b}  = \sqrt a .\sqrt b \)

+ Muốn khai phương một tích của các số không âm, ta có thể khai phương từng thừa số rồi nhân các kết quả với nhau.

+ Muốn nhân các căn thức bậc hai của các số không âm, ta có thể nhân các số dưới dấu căn với nhau rồi lấy căn bậc hai của kết quả đó.

Lời giải chi tiết:

\(\begin{array}{l}A = \sqrt {810.40}  + \sqrt {24} .\sqrt {12} .\sqrt {0,5} \\\,\,\,\,\, = \sqrt {81.100.4}  + \sqrt {24.12.0,5} \\\,\,\,\,\, = \sqrt {{9^2}} .\sqrt {{{10}^2}} .\sqrt {{2^2}}  + \sqrt {144} \\\,\,\,\, = 9.10.2 + \sqrt {{{12}^2}} \\\,\,\,\, = 180 + 12\\\,\,\,\, = 192\end{array}\)

Chọn A.

Đáp án - Lời giải

Câu hỏi 15 :

Tính \(B = \left( {\sqrt {18}  + \sqrt {32}  - \sqrt {50} } \right).\sqrt 2 \)

  • A \(B = 1\)
  • B \(B = 4\)
  • C \(B = 5\)
  • D \(B = 0\)

Đáp án: B

Phương pháp giải:

Với các biểu thức \(A \ge 0,B \ge 0\), ta có: \(\sqrt A .\sqrt B  = \sqrt {A.B} \)

Áp dụng tính chất phân phối của phép nhân đối với phép cộng và phép nhân các căn thức bậc hai của các số không âm.

Lời giải chi tiết:

\(\begin{array}{l}B = \left( {\sqrt {18}  + \sqrt {32}  - \sqrt {50} } \right).\sqrt 2 \\\,\,\,\, = \sqrt {18} .\sqrt 2  + \sqrt {32} .\sqrt 2  - \sqrt {50} .\sqrt 2 \\\,\,\,\, = \sqrt {18.2}  + \sqrt {32.2}  - \sqrt {50.2} \\\,\,\,\, = \sqrt {36}  + \sqrt {64}  - \sqrt {100} \\\,\,\,\, = 6 + 8 - 10\\\,\,\,\, = 4.\end{array}\)

Chọn B.

Đáp án - Lời giải

Câu hỏi 16 :

Giá trị của biểu thức \(C = \sqrt {50}  - \sqrt {18}  + \sqrt {200}  - \sqrt {162} \) là:

  • A \(C = 3\sqrt 2 \)
  • B \(C = \sqrt 2 \)
  • C \(C = 2\sqrt 2 \)
  • D \(C =  - \sqrt 2 \)

Đáp án: A

Phương pháp giải:

Áp dụng phép khai phương một tích nhân các căn thức bậc hai:

Với các biểu thức \(A \ge 0,B \ge 0\), ta có: \(\sqrt {A.B}  = \sqrt A .\sqrt B \)

Lời giải chi tiết:

\(\begin{array}{l}C = \sqrt {50}  - \sqrt {18}  + \sqrt {200}  - \sqrt {162} \\\,\,\,\,\, = \sqrt {2.25}  - \sqrt {2.9}  + \sqrt {2.100}  - \sqrt {2.81} \\\,\,\,\,\, = \sqrt 2 .\sqrt {25}  - \sqrt 2 .\sqrt 9  + \sqrt 2 .\sqrt {100}  - \sqrt 2 .\sqrt {81} \\\,\,\,\,\, = \sqrt 2 \left( {\sqrt {25}  - \sqrt 9  + \sqrt {100}  - \sqrt {81} } \right)\\\,\,\,\,\, = \sqrt 2 \left( {5 - 3 + 10 - 9} \right)\\\,\,\,\,\, = 3\sqrt 2 \end{array}\)

Chọn A.

Đáp án - Lời giải

Câu hỏi 17 :

Tính giá trị của biểu thức \(D = \left( {7\sqrt {48}  + 3\sqrt {27}  - 2\sqrt {12} } \right).\sqrt 3 \)

  • A \(D = 99\)
  • B \(D = 22\)
  • C \(D = 33\)
  • D \(D = 10\)

Đáp án: A

Phương pháp giải:

Với các biểu thức \(A \ge 0,B \ge 0\), ta có: \(\sqrt A .\sqrt B  = \sqrt {A.B} \)

Lời giải chi tiết:

\(\begin{array}{l}D = \left( {7\sqrt {48}  + 3\sqrt {27}  - 2\sqrt {12} } \right).\sqrt 3 \\ = 7\sqrt {48} .\sqrt 3  + 3\sqrt {27} .\sqrt 3  - 2\sqrt {12} .\sqrt 3 \\ = 7\sqrt {48.3}  + 3\sqrt {27.3}  - 2\sqrt {12.3} \\ = 7\sqrt {144}  + 3\sqrt {81}  - 2\sqrt {36} \\ = 7.12 + 3.9 - 2.6\\ = 99.\end{array}\)

Chọn A.

Đáp án - Lời giải

Câu hỏi 18 :

Tính \(E = \left( {\sqrt {125}  + \sqrt {245}  - \sqrt 5 } \right).\sqrt 5 \)

  • A \(E = 12\)
  • B \(E = 11\)
  • C \(E = 55\)
  • D \(E = 0\)

Đáp án: C

Phương pháp giải:

Với các biểu thức \(A \ge 0,B \ge 0\), ta có: \(\sqrt A .\sqrt B  = \sqrt {A.B} \)

Lời giải chi tiết:

\(\begin{array}{l}E = \left( {\sqrt {125}  + \sqrt {245}  - \sqrt 5 } \right).\sqrt 5 \\ = \sqrt {125} .\sqrt 5  + \sqrt {245} .\sqrt 5  - \sqrt 5 .\sqrt 5 \\ = \sqrt {125.5}  + \sqrt {245.5}  - \sqrt {5.5} \\ = \sqrt {625}  + \sqrt {1225}  - \sqrt {{5^2}} \\ = 25 + 35 - 5 = 55.\end{array}\)

Chọn C.

Đáp án - Lời giải

Câu hỏi 19 :

Tính giá trị của biểu thức \(H = \frac{{\sqrt 2  + \sqrt 3  + \sqrt 4  - \sqrt 6  - \sqrt 9  - \sqrt {12} }}{{\sqrt 2  + \sqrt 3  + \sqrt 4 }}\)

  • A \(H = \sqrt 3 \)
  • B \(H = 1\)
  • C \(H = 1 + \sqrt 3 \)
  • D \(H = 1 - \sqrt 3 \)

Đáp án: D

Phương pháp giải:

Với các biểu thức A,B mà \(A \ge 0,B \ge 0\), ta có: \(\sqrt {A.B}  = \sqrt A .\sqrt B \)

Lời giải chi tiết:

\(\begin{array}{l}H = \frac{{\sqrt 2  + \sqrt 3  + \sqrt 4  - \sqrt 6  - \sqrt 9  - \sqrt {12} }}{{\sqrt 2  + \sqrt 3  + \sqrt 4 }}\\\,\,\,\,\, = \frac{{\left( {\sqrt 2  + \sqrt 3  + \sqrt 4 } \right) - \sqrt 3 \left( {\sqrt 2  + \sqrt 3  + \sqrt 4 } \right)}}{{\sqrt 2  + \sqrt 3  + \sqrt 4 }}\\\,\,\,\, = \frac{{\left( {\sqrt 2  + \sqrt 3  + \sqrt 4 } \right)\left( {1 - \sqrt 3 } \right)}}{{\sqrt 2  + \sqrt 3  + \sqrt 4 }}\\\,\,\,\, = 1 - \sqrt 3 \end{array}\)

Chọn D.

Đáp án - Lời giải

Câu hỏi 20 :

Rút gọn rồi tính giá trị của biểu thức: \(A = \sqrt {117,{5^2} - 26,{5^2} - 1440}  + \sqrt {6,{8^2} - 3,{2^2}} \)

  • A \(A =  - 114\)  
  • B \(A = 114\)
  • C \(A = 108\)
  • D \(A = 1\)

Đáp án: B

Phương pháp giải:

Áp dụng phép khai phương một tích nhân các căn thức bậc hai:

Với các biểu thức \(A \ge 0,B \ge 0\), ta có: \(\sqrt {A.B}  = \sqrt A .\sqrt B \)

Áp dụng hằng đẳng thức đáng nhớ để xử lý bài toán: \({A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\)

Lời giải chi tiết:

\(\begin{array}{l}A = \sqrt {117,{5^2} - 26,{5^2} - 1440}  + \sqrt {6,{8^2} - 3,{2^2}} \\\,\,\,\,\, = \sqrt {\left( {117,5 - 26,5} \right)\left( {117,5 + 26,5} \right) - 1440}  + \sqrt {\left( {6,8 - 3,2} \right)\left( {6,8 + 3,2} \right)} \\\,\,\,\, = \sqrt {91.144 - 144.10}  + \sqrt {3,6.10} \\\,\,\,\, = \sqrt {144\left( {91 - 10} \right)}  + \sqrt {36} \\\,\,\, = 12.\sqrt {81}  + 6\\\,\,\, = 12.9 + 6\\\,\,\, = 114.\end{array}\)

Chọn B.

Đáp án - Lời giải

Câu hỏi 21 :

Rút gọn rồi tính giá trị của các biểu thức : \(M = \sqrt {146,{5^2} - 109,{5^2} + 27.256}  - \sqrt {21,{8^2} - 18,{2^2}} \)

  • A \(M = 12\)
  • B \(M = 116\)    
  • C \(M =  - 116\)
  • D \(M = 0\)

Đáp án: B

Phương pháp giải:

Áp dụng phép khai phương một tích nhân các căn thức bậc hai:

Với các biểu thức \(A \ge 0,B \ge 0\), ta có: \(\sqrt {A.B}  = \sqrt A .\sqrt B \)

Áp dụng hằng đẳng thức đáng nhớ để xử lý bài toán: \({A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\)

Lời giải chi tiết:

\(M = \sqrt {146,{5^2} - 109,{5^2} + 27.256}  - \sqrt {21,{8^2} - 18,{2^2}} \)

\(\begin{array}{l} = \sqrt {\left( {146,5 - 109,5} \right)\left( {146,5 + 109,5} \right) + 27.256}  - \sqrt {\left( {21,8 - 18,2} \right)\left( {21,8 + 18,2} \right)} \\ = \sqrt {37.256 + 27.256}  - \sqrt {3,6.40} \\ = \sqrt {256.\left( {37 + 27} \right)}  - \sqrt {144} \\ = 16.\sqrt {64}  - 12\\ = 16.8 - 12\\ = 116\end{array}\)

Chọn B.

Đáp án - Lời giải

Câu hỏi 22 :

Tính : \(P = 2\sqrt 2 \left( {\sqrt 3  - 2} \right) + {\left( {1 + 2\sqrt 2 } \right)^2} - 2\sqrt 6  - \sqrt {9 - \sqrt {17} } .\sqrt {9 + \sqrt {17} } \)

  • A \(P = 1\)
  • B \(P =  - 1\)
  • C \(P =  - \sqrt 3 \)
  • D \(P = \sqrt 3 \)

Đáp án: A

Phương pháp giải:

Áp dụng phép khai phương một tích nhân các căn thức bậc hai:

Với các biểu thức \(A \ge 0,B \ge 0\), ta có: \(\sqrt {A.B}  = \sqrt A .\sqrt B \)

Áp dụng hằng đẳng thức đáng nhớ để xử lý bài toán: \({A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\)

Lời giải chi tiết:

\(\begin{array}{l}P = 2\sqrt 2 \left( {\sqrt 3  - 2} \right) + {\left( {1 + 2\sqrt 2 } \right)^2} - 2\sqrt 6  - \sqrt {9 - \sqrt {17} } .\sqrt {9 + \sqrt {17} } \\\,\,\,\,\, = 2\sqrt 6  - 4\sqrt 2  + 1 + 4\sqrt 2  + 8 - 2\sqrt 6  - \sqrt {\left( {9 - \sqrt {17} } \right)\left( {9 + \sqrt {17} } \right)} \\\,\,\,\,\, = 9 - \sqrt {{9^2} - {{\left( {\sqrt {17} } \right)}^2}} \\\,\,\,\, = 9 - \sqrt {81 - 17} \\\,\,\,\, = 9 - \sqrt {64} \\\,\,\,\, = 9 - 8 = 1.\end{array}\)

Chọn A.

Đáp án - Lời giải

Câu hỏi 23 :

Tính \(M = \left( {4 + \sqrt {15} } \right)\left( {\sqrt {10}  - \sqrt 6 } \right)\sqrt {4 - \sqrt {15} }  + \sqrt {3 - \sqrt 5 } \left( {\sqrt {10}  - \sqrt 2 } \right)\left( {3 + \sqrt 5 } \right)\)

  • A \(M = 10\)
  • B \(M = 1\)       
  • C \(M = 0\)
  • D \(M = 8\)

Đáp án: A

Phương pháp giải:

Áp dụng phép khai phương một tích nhân các căn thức bậc hai:

+ Nếu \(a \ge 0\) và \(b \ge 0\)thì \(\sqrt {a.b}  = \sqrt a .\sqrt b \)

+ Với các biểu thức \(A \ge 0,B \ge 0\), ta có: \(\sqrt {A.B}  = \sqrt A .\sqrt B \)

Áp dụng hằng đẳng thức đáng nhớ để xử lý bài toán: \({A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\)

Lời giải chi tiết:

\(M = \left( {4 + \sqrt {15} } \right)\left( {\sqrt {10}  - \sqrt 6 } \right)\sqrt {4 - \sqrt {15} }  + \sqrt {3 - \sqrt 5 } \left( {\sqrt {10}  - \sqrt 2 } \right)\left( {3 + \sqrt 5 } \right)\)

\(\begin{array}{l} = \sqrt {4 + \sqrt {15} } .\sqrt {4 + \sqrt {15} } .\sqrt {4 - \sqrt {15} } .\left( {\sqrt {10}  - \sqrt 6 } \right) + \sqrt {3 - \sqrt 5 } .\sqrt {3 + \sqrt 5 } .\sqrt {3 + \sqrt 5 } .\left( {\sqrt {10}  - \sqrt 2 } \right)\\ = \sqrt {4 + \sqrt {15} } .\sqrt {16 - 15} .\left( {\sqrt {2.5}  - \sqrt {2.3} } \right) + \sqrt {3 + \sqrt 5 } .\sqrt {9 - 5} .\left( {\sqrt {2.5}  - \sqrt 2 } \right)\\ = \sqrt {4 + \sqrt {15} } .1.\sqrt 2 \left( {\sqrt 5  - \sqrt 3 } \right) + \sqrt {3 + \sqrt 5 } .2.\sqrt 2 \left( {\sqrt 5  - 1} \right)\\ = \sqrt {8 + 2\sqrt {15} } .\left( {\sqrt 5  - \sqrt 3 } \right) + 2.\sqrt {6 + 2\sqrt 5 .} \left( {\sqrt 5  - 1} \right)\\ = \sqrt {5 + 2\sqrt 3 .\sqrt 5  + 3} .\left( {\sqrt 5  - \sqrt 3 } \right) + 2.\sqrt {5 + 2\sqrt 5  + 1} .\left( {\sqrt 5  - 1} \right)\\ = \sqrt {{{\left( {\sqrt 5  + \sqrt 3 } \right)}^2}} .\left( {\sqrt 5  - \sqrt 3 } \right) + 2\sqrt {{{\left( {\sqrt 5  + 1} \right)}^2}} .\left( {\sqrt 5  - 1} \right)\\ = \left( {\sqrt 5  + \sqrt 3 } \right)\left( {\sqrt 5  - \sqrt 3 } \right) + 2\left( {\sqrt 5  + 1} \right)\left( {\sqrt 5  - 1} \right)\\ = 5 - 3 + 2\left( {5 - 1} \right)\\ = 2 + 8\\ = 10\end{array}\)\(\)

Chọn A.

Đáp án - Lời giải

Câu hỏi 24 :

Tính giá trị của tổng \(B = \sqrt {1 + \frac{1}{{{1^2}}} + \frac{1}{{{2^2}}}}  + \sqrt {1 + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}}}  + \sqrt {1 + \frac{1}{{{3^2}}} + \frac{1}{{{4^2}}}}  + ... + \sqrt {1 + \frac{1}{{{{99}^2}}} + \frac{1}{{{{100}^2}}}} \)

  • A \(B = 100\)     
  • B \(B = 12\)
  • C \(B = 0\)
  • D \(B = 99,99\)

Đáp án: D

Phương pháp giải:

Áp dụng câu 14 suy ra \(\sqrt {1 + \frac{1}{{{a^2}}} + \frac{1}{{{{\left( {a + 1} \right)}^2}}}}  = \frac{{{a^2} + a + 1}}{{a\left( {a + 1} \right)}} = 1 + \frac{1}{{a\left( {a + 1} \right)}} = 1 + \frac{1}{a} - \frac{1}{{a + 1}}\)

Lời giải chi tiết:

Áp dụng câu 14 suy ra \(\sqrt {1 + \frac{1}{{{a^2}}} + \frac{1}{{{{\left( {a + 1} \right)}^2}}}}  = \frac{{{a^2} + a + 1}}{{a\left( {a + 1} \right)}} = 1 + \frac{1}{{a\left( {a + 1} \right)}} = 1 + \frac{1}{a} - \frac{1}{{a + 1}}\)

Do đó: \(B = \sqrt {1 + \frac{1}{{{1^2}}} + \frac{1}{{{2^2}}}}  + \sqrt {1 + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}}}  + \sqrt {1 + \frac{1}{{{3^2}}} + \frac{1}{{{4^2}}}}  + ... + \sqrt {1 + \frac{1}{{{{99}^2}}} + \frac{1}{{{{100}^2}}}} \)

\(\)\(\begin{array}{l} = \left( {1 + \frac{1}{1} - \frac{1}{2}} \right) + \left( {1 + \frac{1}{2} - \frac{1}{3}} \right) + \left( {1 + \frac{1}{3} - \frac{1}{4}} \right) + ... + \left( {1 + \frac{1}{{99}} - \frac{1}{{100}}} \right)\\ = 99 + \left( {\frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + ... + \frac{1}{{99}} - \frac{1}{{100}}} \right)\\ = 100 - \frac{1}{{100}}\\ = 99,99.\end{array}\)

Chọn D.

Đáp án - Lời giải

Câu hỏi 25 :

Tính \(\frac{{\sqrt 8 }}{{\sqrt 2 }} + \frac{{\sqrt {27} }}{{\sqrt 3 }} + \frac{{\sqrt {80} }}{{\sqrt 5 }}\)

  • A \(9\)
  • B \(-9\)
  • C \(9,17\)
  • D \(-9,17\)

Đáp án: A

Phương pháp giải:

- Áp dụng: Với \(A \ge 0,B > 0\), \(\frac{{\sqrt A }}{{\sqrt B }} = \sqrt {\frac{A}{B}} \)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}\frac{{\sqrt 8 }}{{\sqrt 2 }} + \frac{{\sqrt {27} }}{{\sqrt 3 }} + \frac{{\sqrt {80} }}{{\sqrt 5 }} = \sqrt {\frac{8}{2}}  + \sqrt {\frac{{27}}{3}}  + \sqrt {\frac{{80}}{5}} \\ = \sqrt 4  + \sqrt 9  + \sqrt {16}  = 2 + 3 + 4 = 9\end{array}\)

Chọn A.

Đáp án - Lời giải

Câu hỏi 26 :

Giá trị của \(\frac{{\sqrt {80} }}{{\sqrt 5 }}\) bằng:

  • A \(16\)                    
  • B \(4\sqrt 5 \)            
  • C \(\sqrt 4 \)    
  • D \(4\)  

Đáp án: D

Phương pháp giải:

Áp dụng công thức: \(\frac{{\sqrt A }}{{\sqrt B }} = \sqrt {\frac{A}{B}} \,\,\,\,\left( {A \ge 0,\,\,\,B > 0} \right).\)

Lời giải chi tiết:

Ta có: \(\frac{{\sqrt {80} }}{{\sqrt 5 }} = \sqrt {\frac{{80}}{5}}  = \sqrt {16}  = 4.\)

Chọn D.

Đáp án - Lời giải

Câu hỏi 27 :

Tính  \(B = \sqrt {4 + \sqrt 7 }  + \sqrt {4 - \sqrt 7 } \)

  • A \(B = 2\sqrt 7  - 2\)    
  • B \(B = 2\sqrt 7  + 2\)
  • C \(B = 2\sqrt 7 \)
  • D \(B = \sqrt {14} \)

Đáp án: D

Phương pháp giải:

- Tính\(\sqrt 2 .B\) rồi suy ra \(B.\)

- Đưa biểu thức dưới dấu căn về bình phương một tổng hoặc một hiệu.

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}B = \sqrt {4 + \sqrt 7 }  + \sqrt {4 - \sqrt 7 } \\ \Rightarrow \sqrt 2 .B = \sqrt {8 + 2\sqrt 7 }  + \sqrt {8 - 2\sqrt 7 } \\ = \sqrt {7 + 2\sqrt 7  + 1}  + \sqrt {7 - 2\sqrt 7  + 1} \\ = \sqrt {{{\left( {\sqrt 7  + 1} \right)}^2}}  + \sqrt {{{\left( {\sqrt 7  - 2} \right)}^2}} \\ = \left| {\sqrt 7  + 1} \right| + \left| {\sqrt 7  - 1} \right|\\ = \sqrt 7  + 1 + \sqrt 7  - 1\,\,\,\,\,\left( {do\,\,\,\sqrt 7  - 1 > 0} \right)\\ = 2\sqrt 7 .\\ \Rightarrow B = \frac{{2\sqrt 7 }}{{\sqrt 2 }} = \sqrt {14} .\end{array}\)

Chọn D.

Đáp án - Lời giải

Câu hỏi 28 :

Tính:

\(\begin{array}{l}a)\,\,\sqrt {\frac{{289}}{{225}}} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,b)\,\,\sqrt {2\frac{{14}}{{25}}} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,c)\,\,\sqrt {\frac{{0,25}}{9}} \\d)\,\,\sqrt {1\frac{{16}}{9}.5\frac{4}{9}.0,01} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,e)\,\,\sqrt {\frac{{{{149}^2} - {{76}^2}}}{{{{457}^2} - {{384}^2}}}} \end{array}\)

  • A \(\begin{array}{l}
    a)\,\,\,\frac{{27}}{{15}} & & & b)\,\,\frac{8}{5}\\
    c)\,\,\frac{1}{6} & & & d)\,\,\frac{7}{{24}}\\
    e)\,\,\frac{{15}}{{29}}
    \end{array}\)
  • B \(\begin{array}{l}
    a)\,\,\,\frac{{17}}{{15}} & & & b)\,\,\frac{8}{5}\\
    c)\,\,\frac{1}{6} & & & d)\,\,\frac{17}{{24}}\\
    e)\,\,\frac{{15}}{{29}}
    \end{array}\)
  • C \(\begin{array}{l}
    a)\,\,\,\frac{{17}}{{15}} & & & b)\,\,\frac{8}{5}\\
    c)\,\,\frac{1}{6} & & & d)\,\,\frac{7}{{24}}\\
    e)\,\,\frac{{25}}{{29}}
    \end{array}\)
  • D \(\begin{array}{l}
    a)\,\,\,\frac{{17}}{{15}} & & & b)\,\,\frac{8}{5}\\
    c)\,\,\frac{1}{6} & & & d)\,\,\frac{7}{{24}}\\
    e)\,\,\frac{{15}}{{29}}
    \end{array}\)

Đáp án: D

Lời giải chi tiết:

 \(\begin{array}{l}a)\,\,\,\sqrt {\frac{{289}}{{225}}}  = \frac{{\sqrt {289} }}{{\sqrt {225} }} = \frac{{\sqrt {{{17}^2}} }}{{\sqrt {{{15}^2}} }} = \frac{{17}}{{15}}.\\b)\,\,\sqrt {2\frac{{14}}{{25}}}  = \sqrt {\frac{{64}}{{25}}}  = \frac{{\sqrt {64} }}{{\sqrt {25} }} = \frac{{\sqrt {{8^2}} }}{{\sqrt {{5^2}} }} = \frac{8}{5}.\\c)\,\,\sqrt {\frac{{0,25}}{9}}  = \frac{{\sqrt {0,25} }}{{\sqrt 9 }} = \frac{{\sqrt {0,{5^2}} }}{{\sqrt {{3^2}} }} = \frac{{0,5}}{3} = \frac{1}{6}.\\d)\,\,\sqrt {1\frac{9}{{16}}.5\frac{4}{9}.0,01}  = \sqrt {\frac{{25}}{{16}}.\frac{{49}}{9}.\frac{1}{{100}}} \\ = \sqrt {\frac{{25}}{{16}}} .\sqrt {\frac{{49}}{9}} .\sqrt {\frac{1}{{100}}}  = \sqrt {\frac{{{5^2}}}{{{4^2}}}} .\sqrt {\frac{{{7^2}}}{{{3^2}}}} .\sqrt {\frac{1}{{{{10}^2}}}}  = \frac{5}{4}.\frac{7}{3}.\frac{1}{{10}} = \frac{7}{{24}}.\\e)\,\,\sqrt {\frac{{{{149}^2} - {{76}^2}}}{{{{457}^2} - {{384}^2}}}}  = \sqrt {\frac{{\left( {149 - 76} \right)\left( {149 + 76} \right)}}{{\left( {457 - 384} \right)\left( {457 + 384} \right)}}} \\ = \sqrt {\frac{{73.225}}{{73.841}}}  = \sqrt {\frac{{225}}{{841}}}  = \frac{{\sqrt {225} }}{{\sqrt {841} }} = \frac{{15}}{{29}}.\end{array}\)

Đáp án - Lời giải

Câu hỏi 29 :

Rút gọn biểu thức \(\frac{{3 + 2\sqrt 2  + \sqrt 3  + \sqrt 6 }}{{1 + \sqrt 2  + \sqrt 3 }}\)

  • A \(1 + \sqrt 2 \)
  • B \(3\)
  • C \(1 + \sqrt 3 \)
  • D \(\frac{1}{{1 + \sqrt 2 }}\)

Đáp án: A

Phương pháp giải:

- Phân tích \(3 + 2\sqrt 2  + \sqrt 3  + \sqrt 6  = \left( {1 + \sqrt 2 } \right)\left( {1 + \sqrt 2  + \sqrt 3 } \right)\) rồi rút gọn biểu thức.

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}\frac{{3 + 2\sqrt 2  + \sqrt 3  + \sqrt 6 }}{{1 + \sqrt 2  + \sqrt 3 }} = \frac{{1 + \sqrt 4  + \sqrt 2  + \sqrt 2  + \sqrt 3  + \sqrt 6 }}{{1 + \sqrt 2  + \sqrt 3 }}\\ = \frac{{\left( {1 + \sqrt 2  + \sqrt 3 } \right) + \left( {\sqrt 2  + \sqrt 4  + \sqrt 6 } \right)}}{{1 + \sqrt 2  + \sqrt 3 }}\\ = \frac{{1 + \sqrt 2  + \sqrt 3  + \sqrt 2 \left( {1 + \sqrt 2  + \sqrt 3 } \right)}}{{1 + \sqrt 2  + \sqrt 3 }}\\ = \frac{{\left( {1 + \sqrt 2 } \right)\left( {1 + \sqrt 2  + \sqrt 3 } \right)}}{{1 + \sqrt 2  + \sqrt 3 }} = 1 + \sqrt 2 \end{array}\)

Chọn A.

Đáp án - Lời giải

Câu hỏi 30 :

Tính giá trị biểu thức \(A = \frac{1}{{1 + \sqrt 3 }} + \frac{1}{{\sqrt 3  + \sqrt 5 }} + \frac{1}{{\sqrt 5  + \sqrt 7 }} + ... + \frac{1}{{\sqrt {2019}  + \sqrt {2021} }}\)

  • A \(1 - \sqrt {2021} \)
  • B \(\sqrt {2021}  - 1\)
  • C \(\frac{{\sqrt {2021}  - 1}}{2}\)
  • D \(\frac{{\sqrt {2019}  - 1}}{2}\)

Đáp án: C

Phương pháp giải:

-  Áp dụng: \(\frac{1}{{\sqrt a  + \sqrt b }} = \frac{{\sqrt a  - \sqrt b }}{{a - b}}\) với \(a > b\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}A = \frac{1}{{1 + \sqrt 3 }} + \frac{1}{{\sqrt 3  + \sqrt 5 }} + \frac{1}{{\sqrt 5  + \sqrt 7 }} + ... + \frac{1}{{\sqrt {2019}  + \sqrt {2021} }}\\ = \frac{{\sqrt 3  - 1}}{{\left( {1 + \sqrt 3 } \right)\left( {\sqrt 3  - 1} \right)}} + \frac{{\sqrt 5  - \sqrt 3 }}{{\left( {\sqrt 3  + \sqrt 5 } \right)\left( {\sqrt 5  - \sqrt 3 } \right)}} + ....... + \frac{{\sqrt {2021}  - \sqrt {2019} }}{{\left( {\sqrt {2019}  + \sqrt {2021} } \right)\left( {\sqrt {2021}  - \sqrt {2019} } \right)}}\\ = \frac{{\sqrt 3  - 1}}{{3 - 1}} + \frac{{\sqrt 5  - \sqrt 3 }}{{5 - 3}} + ....... + \frac{{\sqrt {2021}  - \sqrt {2019} }}{{2021 - 2019}}\\ = \frac{{\sqrt 3  - 1}}{2} + \frac{{\sqrt 5  - \sqrt 3 }}{2} + ...... + \frac{{\sqrt {2021}  - \sqrt {2019} }}{2}\\ = \frac{{\sqrt 3  - 1 + \sqrt 5  - \sqrt 3  + ....... + \sqrt {2021}  - \sqrt {2019} }}{2}\\ = \frac{{\sqrt {2021}  - 1}}{2}.\end{array}\)

Chọn C.

Đáp án - Lời giải

Xem thêm

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.