20 bài tập Tính giá trị biểu thức lượng giác
Làm đề thiCâu hỏi 1 :
Với góc nhọn \(\alpha \) tùy ý, khẳng định nào sau đây là Sai?
- A \(\tan \,\alpha = \dfrac{{\cos \alpha }}{{\sin \alpha }}.\)
- B \(\tan \,\alpha .\cot \alpha = 1.\)
- C \(\cot \,\alpha = \dfrac{{\cos \alpha }}{{\sin \alpha }}.\)
- D \({\sin ^2}\alpha + \cos {\,^2}\alpha = 1.\)
Đáp án: A
Phương pháp giải:
Sử dụng các công thức tỉ số lượng giác của góc nhọn trong tam giác vuông.
Lời giải chi tiết:
Ta có các công thức: \(\tan \alpha = \dfrac{{\sin \alpha }}{{\cos \alpha }};\) \(\cot \alpha = \dfrac{{\cos \alpha }}{{\sin \alpha }};\) \(\tan \alpha .\cot \alpha = 1;\) \({\sin ^2}\alpha + {\cos ^2}\alpha = 1.\)
Vậy chỉ có đáp án A sai.
Chọn A.
Câu hỏi 2 :
Khẳng định nào dưới đây là đúng?
- A \(\sin \alpha = \cos \left( {{{90}^0} - \alpha } \right)\)
- B \(\sin {\alpha ^2} + \cos {\alpha ^2} = 1\)
- C \(\tan \alpha = \tan \left( {{{90}^0} - \alpha } \right)\)
- D \(\cot \alpha = \cot \left( {{{90}^0} - \alpha } \right)\)
Đáp án: A
Phương pháp giải:
Áp dụng các công thức lượng giác cơ bản.
Lời giải chi tiết:
+) Đáp án A: đúng
+) Đáp án B: sai, công thức đúng: \({\sin ^2}\alpha + co{s^2}\alpha = 1\)
+) Đáp án C: sai, công thức đúng: \(\tan \alpha = \cot \left( {{{90}^0} - \alpha } \right)\)
+) Đáp án D: sai, công thức đúng: \(\cot \alpha = \tan \left( {{{90}^0} - \alpha } \right)\)
Chọn A
Câu hỏi 3 :
Không dùng MTBT hoặc bảng số, hãy sắp xếp các tỉ số lượng giác sau theo thứ tự tăng dần.
Câu 1:
\(\cos {\rm{ }}{44^o},{\rm{ sin }}{50^o},{\rm{ sin }}{70^o},{\rm{ cos }}{55^o}\)
- A \(\cos {44^0} < \sin {50^0} < \sin {70^0} < \cos {55^0}\)
- B \(\cos{44^0} < \cos {55^0} < \sin {50^0} < \sin {70^0}\)
- C \(\cos {55^0} < \cos {44^0} < \sin {50^0} < \sin {70^0}\)
- D \(\cos {55^0} < \cos {44^0} < \sin {70^0} < \sin {50^0}\)
Đáp án: C
Phương pháp giải:
Áp dụng \(0 < \alpha < \beta < {90^0} \Rightarrow \left\{ \begin{array}{l}\sin \alpha < \sin \beta \\cos\alpha > cos\beta \end{array} \right..\)
Ta có: \(\alpha + \beta = {90^0} \Rightarrow \left\{ \begin{array}{l}\sin \alpha = \cos \beta \\\cos \alpha = \sin \beta \end{array} \right.\)
Lời giải chi tiết:
\(\cos {\rm{ }}{44^o},{\rm{ sin }}{50^o},{\rm{ sin }}{70^o},{\rm{ cos }}{55^o}\)
Ta có: \(\left\{ \begin{array}{l}\cos {\rm{ }}{44^0} = \cos {\rm{ }}\left( {{{90}^0} - {{46}^0}} \right) = {\rm{sin 4}}{{\rm{6}}^0}\\\cos {\rm{ 5}}{{\rm{5}}^0} = \cos {\rm{ }}\left( {{{90}^0} - {{35}^0}} \right) = {\rm{sin 3}}{{\rm{5}}^0}\end{array} \right.\)
Vì \({35^0} < {46^0} < {50^0} < {70^0}\)\( \Rightarrow {\rm{sin 3}}{5^o} < \sin {\rm{ }}{46^o} < {\rm{sin }}{50^o} < {\rm{sin }}{70^o}\)
\( \Rightarrow {\rm{cos }}{55^o} < \cos {\rm{ }}{44^o} < {\rm{sin }}{50^o} < {\rm{sin }}{70^o}.\)
Chọn C.
Câu 2:
\({\rm{sin }}{49^o},{\rm{ cos }}{15^o},{\rm{ sin }}{65^o},{\rm{ cos }}{50^o},{\rm{ }}\cos {\rm{ }}{42^o}\)
- A \(\sin {49^0} < \sin {65^0} < \cos {15^0} < \cos {50^0} < \cos {42^0}\)
- B \(\cos {50^0} < \cos {42^0} < \sin {49^0} < \sin {65^0} < \cos {15^0}\)
- C \(\cos {50^0} < \cos {42^0} < \cos {15^0} < \sin {49^0} < \sin {65^0}\)
- D \(\cos {15^0} < \cos {42^0} < \cos {50^0} < \sin {49^0} < \sin {65^0}\)
Đáp án: B
Phương pháp giải:
Áp dụng \(0 < \alpha < \beta < {90^0} \Rightarrow \left\{ \begin{array}{l}\sin \alpha < \sin \beta \\cos\alpha > cos\beta \end{array} \right..\)
Ta có: \(\alpha + \beta = {90^0} \Rightarrow \left\{ \begin{array}{l}\sin \alpha = \cos \beta \\\cos \alpha = \sin \beta \end{array} \right.\)
Lời giải chi tiết:
\({\rm{sin }}{49^o},{\rm{ cos }}{15^o},{\rm{ sin }}{65^o},{\rm{ cos }}{50^o},{\rm{ }}\cos {\rm{ }}{42^o}\)
Ta có: \(\left\{ \begin{array}{l}sin{\rm{ }}{49^0} = \cos {\rm{ }}\left( {{{90}^0} - {{41}^0}} \right) = {\rm{sin 4}}{{\rm{1}}^0}\\sin{\rm{ 6}}{{\rm{5}}^0} = \cos {\rm{ }}\left( {{{90}^0} - {{25}^0}} \right) = {\rm{sin 2}}{{\rm{5}}^0}\end{array} \right.\)
Vì \({15^0} < {25^0} < {41^0} < {42^0} < {50^0}\)\( \Rightarrow \cos {\rm{ }}{50^o} < \cos {\rm{ }}{42^o}{\rm{ < }}\cos {\rm{ 4}}{{\rm{1}}^o}{\rm{ < }}\cos {\rm{ 2}}{{\rm{5}}^o} < \cos {15^0}\)
\( \Rightarrow {\rm{cos }}{50^0} < \cos {\rm{ }}{42^0} < {\rm{sin }}{49^0} < {\rm{sin }}{65^0}{\rm{ < cos }}{15^0}\)
Chọn B.
Câu hỏi 4 :
Tính các tỷ số lượng giác còn lại của \(\alpha \) với \(0 < \alpha < {90^0}\) biết:
Câu 1:
\(\sin \alpha = \frac{2}{3}\)
- A \(\cos \alpha = \pm \frac{{\sqrt 5 }}{3}\,\,;\,\,\,\tan \alpha = \pm \frac{{2\sqrt 5 }}{5}\,\,;\,\,\,\cot \alpha = \pm \frac{{\sqrt 5 }}{2}\)
- B \(\cos \alpha = - \frac{{\sqrt 5 }}{3}\,\,;\,\,\,\tan \alpha = - \frac{{2\sqrt 5 }}{5}\,\,;\,\,\,\cot \alpha = - \frac{{\sqrt 5 }}{2}\)
- C \(\cos \alpha = \frac{{\sqrt 5 }}{3}\,\,;\,\,\,\tan \alpha = \frac{{2\sqrt 5 }}{5}\,\,;\,\,\,\cot \alpha = \frac{{\sqrt 5 }}{2}\)
- D \(\cos \alpha = \pm \frac{{\sqrt 5 }}{3}\,\,;\,\,\,\tan \alpha = \frac{{2\sqrt 5 }}{5}\,\,;\,\,\,\cot \alpha = \frac{{\sqrt 5 }}{2}\)
Đáp án: C
Phương pháp giải:
Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha .\cot \alpha = 1\\1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\end{array} \right..\)
Lời giải chi tiết:
Ta có: \(0 < \alpha < {90^0}\) \( \Rightarrow \left\{ \begin{array}{l}\sin \alpha > 0\\\cos \alpha > 0\\\tan \alpha > 0\\\cot \alpha > 0\end{array} \right..\)
\(\sin \alpha = \frac{2}{3}\)
*\({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)\( \Leftrightarrow {\left( {\frac{2}{3}} \right)^2} + {\cos ^2}\alpha = 1\)\( \Leftrightarrow {\cos ^2}\alpha = 1 - \frac{4}{9} = \frac{5}{9}\)\( \Rightarrow \cos \alpha = \frac{{\sqrt 5 }}{3}\)
*\(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{2}{3}:\frac{{\sqrt 5 }}{3} = \frac{{2\sqrt 5 }}{5}\)
*\(\cot \alpha = \frac{1}{{\tan \alpha }} = 1:\frac{{2\sqrt 5 }}{5} = \frac{{\sqrt 5 }}{2}\)
Chọn C.
Câu 2:
\(\tan \alpha = \frac{4}{3}\)
- A \(\sin \alpha = \pm \frac{4}{5}\,\,;\,\,\cos \alpha = \pm \frac{3}{5}\,\,;\,\,\cot \alpha = \frac{3}{4}\)
- B \(\sin \alpha = \frac{4}{5}\,\,;\,\,\cos \alpha = \frac{3}{5}\,\,;\,\,\cot \alpha = \frac{3}{4}\)
- C \(\sin \alpha = \pm \frac{3}{5}\,\,;\,\,\cos \alpha = \pm \frac{4}{5}\,\,;\,\,\cot \alpha = \frac{3}{4}\)
- D \(\sin \alpha = \frac{3}{5}\,\,;\,\,\cos \alpha = \frac{4}{5}\,\,;\,\,\cot \alpha = \frac{3}{4}\)
Đáp án: B
Phương pháp giải:
Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha .\cot \alpha = 1\\1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\end{array} \right..\)
Lời giải chi tiết:
Ta có: \(0 < \alpha < {90^0}\) \( \Rightarrow \left\{ \begin{array}{l}\sin \alpha > 0\\\cos \alpha > 0\\\tan \alpha > 0\\\cot \alpha > 0\end{array} \right..\)
\(\tan \alpha = \frac{4}{3}\)
* \(\tan \alpha .\cot \alpha = 1\)\( \Leftrightarrow \cot \alpha = 1:tan\alpha = 1:\frac{4}{3} = \frac{3}{4}\)
* \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\)\( \Leftrightarrow 1 + {\left( {\frac{4}{3}} \right)^2} = \frac{1}{{{{\cos }^2}\alpha }}\)\( \Leftrightarrow \frac{1}{{{{\cos }^2}\alpha }} = \frac{{25}}{9}\)\( \Rightarrow {\cos ^2}\alpha = \frac{9}{{25}}\)\( \Rightarrow \cos \alpha = \frac{3}{5}\)
*\({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)\( \Leftrightarrow {\left( {\frac{3}{5}} \right)^2} + {\sin ^2}\alpha = 1\)\( \Leftrightarrow {\sin ^2}\alpha = 1 - \frac{9}{{25}} = \frac{{16}}{{25}}\)\( \Rightarrow \sin \alpha = \frac{4}{5}\)
Chọn B.
Câu hỏi 5 :
Tính các tỷ số lượng giác còn lại của \(\alpha \) biết:
Câu 1:
\(\sin \alpha = \frac{5}{{13}}\)
- A \(\cos \alpha = \frac{{12}}{{13}}\,\,;\,\,\tan \alpha = \frac{5}{{12}}\,\,;\,\,\cot \alpha = \frac{{12}}{5}\)
- B \(\cos \alpha = \pm \frac{{12}}{{13}}\,\,;\,\,\tan \alpha = \pm \frac{5}{{12}}\,\,;\,\,\cot \alpha = \pm \frac{{12}}{5}\)
- C \(\cos \alpha = \pm \frac{{12}}{{13}}\,\,;\,\,\tan \alpha = \pm \frac{{12}}{5}\,\,;\,\,\cot \alpha = \pm \frac{5}{{12}}\)
- D \(\cos \alpha = \frac{{12}}{{13}}\,\,;\,\,\tan \alpha = \frac{{12}}{5}\,\,;\,\,\cot \alpha = \frac{5}{{12}}\)
Đáp án: B
Phương pháp giải:
Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha .\cot \alpha = 1\\1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\end{array} \right.\)
Lời giải chi tiết:
\(\sin \alpha = \frac{5}{{13}}\)
Ta có: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Leftrightarrow {\left( {\frac{5}{{13}}} \right)^2} + {\cos ^2}\alpha = 1\)\( \Leftrightarrow {\cos ^2}\alpha = 1 - \frac{{25}}{{169}} = \frac{{144}}{{169}}\)\( \Rightarrow \cos \alpha = \pm \frac{{12}}{{13}}\)
Lại có: \({\tan ^2}\alpha + 1 = \frac{1}{{{{\cos }^2}\alpha }}\) \( \Leftrightarrow {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }} - 1 = \frac{{169}}{{144}} - 1 = \frac{{25}}{{144}}\) \( \Rightarrow \tan \alpha = \pm \frac{5}{{12}}\)
\( \Rightarrow \cot \alpha = \frac{1}{{\tan \alpha }} = \pm \frac{{12}}{5}\)
Chọn B.
Câu 2:
\(\tan \alpha = \frac{{12}}{{35}}\)
- A \(\cot \alpha = \frac{{35}}{{12}}\,\,;\,\,\cos \alpha = \frac{{35}}{{37}}\,\,;\,\,\sin \alpha = \frac{{12}}{{37}}\)
- B \(\cot \alpha = \frac{{35}}{{12}}\,\,;\,\,\sin \alpha = \pm \frac{{35}}{{37}}\,\,;\,\,\cos \alpha = \pm \frac{{12}}{{37}}\)
- C \(\cot \alpha = \frac{{35}}{{12}}\,\,;\,\,\cos \alpha = \pm \frac{{35}}{{37}}\,\,;\,\,\sin \alpha = \pm \frac{{12}}{{37}}\)
- D \(\cot \alpha = \frac{{35}}{{12}}\,\,;\,\,\sin \alpha = \frac{{35}}{{37}}\,\,;\,\,\cos \alpha = \frac{{12}}{{37}}\)
Đáp án: C
Phương pháp giải:
Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha .\cot \alpha = 1\\1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\end{array} \right.\)
Lời giải chi tiết:
\(\tan \alpha = \frac{{12}}{{35}}\)
Ta có: \(\tan \alpha .\cot \alpha = 1\)\( \Leftrightarrow \cot \alpha = \frac{1}{{\tan \alpha }} = 1:\frac{{12}}{{35}} = \frac{{35}}{{12}}\)
Lại có: \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\)\( \Leftrightarrow 1 + {\left( {\frac{{12}}{{35}}} \right)^2} = \frac{1}{{{{\cos }^2}\alpha }}\)\( \Leftrightarrow \frac{1}{{{{\cos }^2}\alpha }} = \frac{{1369}}{{1225}}\)\( \Rightarrow {\cos ^2}\alpha = \frac{{1225}}{{1369}}\)\( \Rightarrow \cos \alpha = \pm \frac{{35}}{{37}}\)
\({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)\( \Leftrightarrow {\left( {\frac{{35}}{{37}}} \right)^2} + {\sin ^2}\alpha = 1\)\( \Leftrightarrow {\sin ^2}\alpha = 1 - \frac{{1225}}{{1369}} = \frac{{144}}{{1369}}\)\( \Rightarrow \sin \alpha = \pm \frac{{12}}{{37}}\)
Chọn C.
Câu hỏi 6 :
Tính các tỷ số lượng giác còn lại của \(\alpha \) biết:
Câu 1:
\({\rm{cos}}\alpha = \frac{3}{4}\)
- A \(\sin \alpha = \pm \frac{4}{5}\,\,;\,\,\tan \alpha = \pm \frac{{16}}{{15}}\,\,;\,\,\cot \alpha = \pm \frac{{15}}{{16}}\)
- B \(\sin \alpha = \frac{4}{5}\,\,;\,\,\tan \alpha = \frac{{16}}{{15}}\,\,;\,\,\cot \alpha = \frac{{15}}{{16}}\)
- C \(\sin \alpha = \frac{4}{5}\,\,;\,\,\tan \alpha = \frac{{15}}{{16}}\,\,;\,\,\cot \alpha = \frac{{16}}{{15}}\)
- D \(\sin \alpha = \pm \frac{4}{5}\,\,;\,\,\tan \alpha = \pm \frac{{15}}{{16}}\,\,;\,\,\cot \alpha = \pm \frac{{16}}{{15}}\)
Đáp án: A
Phương pháp giải:
Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha .\cot \alpha = 1\\1 + {\cot ^2}\alpha = \frac{1}{{si{n^2}\alpha }}\end{array} \right..\)
Lời giải chi tiết:
\({\rm{cos}}\alpha = \frac{3}{4}\)
*\({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)\( \Leftrightarrow {\sin ^2}\alpha + {\left( {\frac{3}{4}} \right)^2} = 1\)\( \Leftrightarrow {\sin ^2}\alpha = 1 - \frac{9}{{25}} = \frac{{16}}{{25}}\)\( \Rightarrow \sin \alpha = \pm \frac{4}{5}\)
*\(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \pm \frac{4}{5}:\frac{3}{4} = \pm \frac{{16}}{{15}}\)
*\(\cot \alpha = \frac{1}{{\tan \alpha }} = 1:\left( { \pm \frac{{16}}{{15}}} \right) = \pm \frac{{15}}{{16}}\)
Chọn A.
Câu 2:
\(cot\alpha = \frac{8}{{15}}\)
- A \(\tan \alpha = \frac{{15}}{8}\,\,;\,\,\sin \alpha = \frac{{15}}{{17}}\,\,;\,\,\cos \alpha = \frac{8}{{17}}\)
- B \(\tan \alpha = \pm \frac{{15}}{8}\,\,;\,\,\cos \alpha = \pm \frac{{15}}{{17}}\,\,;\,\,\sin \alpha = \pm \frac{8}{{17}}\)
- C \(\tan \alpha = \frac{{15}}{8}\,\,;\,\,\cos \alpha = \frac{{15}}{{17}}\,\,;\,\,\sin \alpha = \frac{8}{{17}}\)
- D \(\tan \alpha = \frac{{15}}{8}\,\,;\,\,\sin \alpha = \pm \frac{{15}}{{17}}\,\,;\,\,\cos \alpha = \pm \frac{8}{{17}}\)
Đáp án: D
Phương pháp giải:
Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha .\cot \alpha = 1\\1 + {\cot ^2}\alpha = \frac{1}{{si{n^2}\alpha }}\end{array} \right..\)
Lời giải chi tiết:
\(cot\alpha = \frac{8}{{15}}\)
* \(\tan \alpha .\cot \alpha = 1 \Leftrightarrow tan\alpha = \frac{1}{{\cot \alpha }} = \frac{1}{{\frac{8}{{15}}}} = \frac{{15}}{8}\)
* \(1 + {\cot ^2}\alpha = \frac{1}{{si{n^2}\alpha }}\)\( \Leftrightarrow 1 + {\left( {\frac{8}{{15}}} \right)^2} = \frac{1}{{si{n^2}\alpha }}\)\( \Leftrightarrow \frac{1}{{si{n^2}\alpha }} = \frac{{289}}{{225}}\)\( \Rightarrow si{n^2}\alpha = \frac{{225}}{{289}}\)\( \Rightarrow sin\alpha = \pm \frac{{15}}{{17}}\)
*\({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)\( \Leftrightarrow {\left( {\frac{{15}}{{17}}} \right)^2} + {\cos ^2}\alpha = 1\)\( \Leftrightarrow {\cos ^2}\alpha = 1 - \frac{{225}}{{289}} = \frac{{64}}{{289}}\)\( \Rightarrow \cos \alpha = \pm \frac{8}{{17}}\)
Chọn D.
Câu hỏi 7 :
Giá trị của biểu thức \(P = {\cos ^2}{20^0} + {\cos ^2}{40^0} + {\cos ^2}{50^0} + {\cos ^2}{70^0}\) bằng
- A \(0\)
- B \(1\)
- C \(2\)
- D \(3\)
Đáp án: C
Phương pháp giải:
+) Sử dụng công thức: \(\sin \alpha = \cos \left( {{{90}^0} - \alpha } \right);\;\;{\sin ^2}\alpha + {\cos ^2}\alpha = 1.\)
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}P = {\cos ^2}{20^0} + {\cos ^2}{40^0} + {\cos ^2}{50^0} + {\cos ^2}{70^0}\\ = {\cos ^2}{20^0} + {\cos ^2}{40^0} + {\sin ^2}{40^0} + {\sin ^2}{20^0}\\ = \left( {{{\cos }^2}{{20}^0} + {{\sin }^2}{{20}^0}} \right) + \left( {{{\cos }^2}{{40}^0} + {{\sin }^2}{{40}^0}} \right)\\ = 1 + 1 = 2.\end{array}\)
Chọn C.
Câu hỏi 8 :
Tính giá trị của các biểu thức sau:
Câu 1:
\(A = {\sin ^2}{15^0} + {\sin ^2}{25^0} + {\sin ^2}{35^0} + {\sin ^2}{45^0} + {\sin ^2}{55^0} + {\sin ^2}{65^0} + {\sin ^2}{75^0}\)
- A \(A=0\)
- B \(A = \frac{7}{2}\)
- C \(A = \frac-{7}{2}\)
- D \(A = \frac{5}{2}\)
Đáp án: B
Phương pháp giải:
Sử dụng các công thức đặc biệt: \(\left\{ \begin{array}{l}\sin \alpha = \cos \left( {{{90}^0} - \alpha } \right)\\\tan \alpha = \cot \left( {{{90}^0} - \alpha } \right)\\{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha .\cot \alpha = 1\end{array} \right..\)
Lời giải chi tiết:
\(\,\,A = {\sin ^2}{15^0} + {\sin ^2}{25^0} + {\sin ^2}{35^0} + {\sin ^2}{45^0} + {\sin ^2}55 + {\sin ^2}{65^0} + {\sin ^2}{75^0}\)
Ta có:
\(\begin{array}{l}A = {\sin ^2}{15^0} + {\sin ^2}{25^0} + {\sin ^2}{35^0} + {\sin ^2}{45^0} + {\sin ^2}55 + {\sin ^2}{65^0} + {\sin ^2}{75^0}\\\,\,\,\,\, = {\sin ^2}{15^0} + {\sin ^2}{25^0} + {\sin ^2}{35^0} + {\sin ^2}{45^0} + {\cos ^2}{35^0} + {\cos ^2}{25^0} + {\cos ^2}{15^0}\\\,\,\,\,\, = \left( {{{\sin }^2}{{15}^0} + {{\cos }^2}{{15}^0}} \right) + \left( {{{\sin }^2}{{25}^0} + {{\cos }^2}25} \right) + \left( {{{\sin }^2}{{35}^0} + {{\cos }^2}{{35}^0}} \right) + {\sin ^2}{45^0}\\\,\,\,\, = 1 + 1 + 1 + {\left( {\frac{{\sqrt 2 }}{2}} \right)^2} = 3 + \frac{1}{2} = \frac{7}{2}.\end{array}\)
Câu 2:
\(B = \tan {10^0}.\tan {80^0} - \tan {20^0}.\tan {70^0}.\)
- A \(B=0\)
- B \(B=1\)
- C \(B = \frac{7}{2}\)
- D \(B =- \frac{7}{2}\)
Đáp án: A
Phương pháp giải:
Sử dụng các công thức đặc biệt: \(\left\{ \begin{array}{l}\sin \alpha = \cos \left( {{{90}^0} - \alpha } \right)\\\tan \alpha = \cot \left( {{{90}^0} - \alpha } \right)\\{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha .\cot \alpha = 1\end{array} \right..\)
Lời giải chi tiết:
\(\,\,B = \tan {10^0}.\tan {80^0} - \tan {20^0}.\tan {70^0}.\)
Ta có:
\(\begin{array}{l}\,B = \tan {10^0}.\tan {80^0} - \tan {20^0}.\tan {70^0}\\\,\,\,\,\, = \tan {10^0}.cot{10^0} - \tan {20^0}.\cot {20^0}\\\,\,\,\,\, = 1 - 1 = 0.\end{array}\)
Câu hỏi 9 :
Biết \({0^0} < \alpha < {90^0}\). Giá trị bủa biểu thức \(\left[ {\sin \alpha + 3\,\cos \left( {{{90}^0} - \alpha } \right)} \right]:\left[ {\sin \alpha - 2\cos \left( {{{90}^0} - \alpha } \right)} \right]\) bằng:
- A \( - 4\)
- B \(4\)
- C \(\frac{{ - 3}}{2}\)
- D \(\frac{3}{2}\).
Đáp án: A
Phương pháp giải:
Áp dụng tính chất: \(\sin \alpha = \cos \left( {{{90}^0} - \alpha } \right);\,\,\,\,\cos \alpha = \sin \left( {{{90}^0} - \alpha } \right).\)
Lời giải chi tiết:
\(\begin{array}{l}\left[ {\sin \alpha + 3\,\cos \left( {{{90}^0} - \alpha } \right)} \right]:\left[ {\sin \alpha - 2\cos \left( {{{90}^0} - \alpha } \right)} \right] = \left( {\sin \alpha + 3\sin \alpha } \right):\left( {\sin \alpha - 2\sin \alpha } \right)\\ = \left( {4\sin \alpha } \right):\left( { - \sin \alpha } \right) = - 4.\end{array}\)
Chọn A
Câu hỏi 10 :
Tính số đo góc nhọn \(\alpha \) biết \(10{\sin ^2}\alpha + 6{\cos ^2}\alpha = 8\).
- A \(\alpha = {30^0}.\)
- B \(\alpha = {45^0}.\)
- C \(\alpha = {60^0}.\)
- D \(\alpha = {120^0}.\)
Đáp án: B
Phương pháp giải:
- Sử dụng công thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\,\,\forall \alpha \).
- Tính \(\sin \alpha \), từ đo suy ra số đo góc \(\alpha \).
Lời giải chi tiết:
Ta có: \(10{\sin ^2}\alpha + 6{\cos ^2}\alpha = 8\)
\(\begin{array}{l} \Leftrightarrow 4{\sin ^2}\alpha + 6\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) = 8\\ \Leftrightarrow 4{\sin ^2}\alpha + 6 = 8\\ \Leftrightarrow {\sin ^2}\alpha = \dfrac{1}{2} \Leftrightarrow \sin \alpha = \pm \dfrac{{\sqrt 2 }}{2}\end{array}\)
\(Do\,\,\alpha < {90^0} \Rightarrow \sin \alpha > 0 \Leftrightarrow \sin \alpha = \dfrac{{\sqrt 2 }}{2}.\)
Vậy \(\alpha = {45^0}.\)
Chọn B.
Câu hỏi 11 :
Hãy đơn giản các biểu thức:
Câu 1:
\(1 - {\sin ^2}x\)
- A \({\cos ^2}x\)
- B \({\tan ^2}x\)
- C \({\cot ^2}x\)
- D \( - {\cos ^2}x\)
Đáp án: A
Phương pháp giải:
Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\end{array} \right..\)
Lời giải chi tiết:
\(1 - {\sin ^2}x = {\cos ^2}x\)
Chọn A.
Câu 2:
\(\sin x - \sin x.{\rm{co}}{{\rm{s}}^2}x\)
- A \({\tan ^3}x\)
- B \({\cos ^3}x\)
- C \({\cot ^3}x\)
- D \({\sin ^3}x\)
Đáp án: D
Phương pháp giải:
Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\end{array} \right..\)
Lời giải chi tiết:
\(\sin x - \sin x.{\rm{co}}{{\rm{s}}^2}x\)\( = \sin x\left( {1 - {\rm{co}}{{\rm{s}}^2}x} \right)\)\( = \sin x.{\sin ^2}x = {\sin ^3}x\)
Chọn D.
Câu 3:
\({\tan ^2}x - {\sin ^2}x.{\tan ^2}x\)
- A \({\cos ^2}x\)
- B \({\tan ^2}x\)
- C \({\cot ^2}x\)
- D \({\sin ^2}x\)
Đáp án: D
Phương pháp giải:
Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\end{array} \right..\)
Lời giải chi tiết:
\({\tan ^2}x - {\sin ^2}x.{\tan ^2}x\)\( = {\tan ^2}x\left( {1 - {{\sin }^2}x} \right)\)\( = \frac{{{{\sin }^2}x}}{{co{s^2}x}}.co{s^2}x = {\sin ^2}x\)
Chọn D.
Câu hỏi 12 :
Cho biểu thức \(A = \frac{{1 - 2\sin \alpha \cos \alpha }}{{{{\sin }^2}\alpha - {{\cos }^2}\alpha }}\) với \(\alpha \ne {45^0}\)
a) Chứng minh rằng \(A = \frac{{\sin \alpha - \cos \alpha }}{{\sin \alpha + \cos \alpha }}\)
b) Tính giá trị của A biết \(\tan \alpha = \frac{1}{3}\).
- A \({\rm{b)}}\,\,A = \frac{1}{2}\)
- B \({\rm{b)}}\,\,A = - \frac{1}{2}\)
- C \({\rm{b)}}\,\,A = \frac{3}{2}\)
- D \({\rm{b)}}\,\,A = - \frac{3}{2}\)
Đáp án: B
Phương pháp giải:
Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\end{array} \right..\)
Sử dụng hằng đẳng thức.
Lời giải chi tiết:
a) Chứng minh rằng \(A = \frac{{\sin \alpha - c{\rm{os}}\alpha }}{{\sin \alpha + c{\rm{os}}\alpha }}\)
\(\begin{array}{l}A = \frac{{1 - 2\sin \alpha \cos \alpha }}{{{{\sin }^2}\alpha - c{\rm{o}}{{\rm{s}}^2}\alpha }} = \frac{{{{\sin }^2}\alpha + {{\cos }^2}\alpha - 2\sin \alpha \cos \alpha }}{{\left( {\sin \alpha - \cos \alpha } \right)\left( {\sin \alpha + \cos \alpha } \right)}}\\ = \frac{{{{\left( {\sin \alpha - \cos \alpha } \right)}^2}}}{{\left( {\sin \alpha - \cos \alpha } \right)\left( {\sin \alpha + \cos \alpha } \right)}}\\ = \frac{{\sin \alpha - \cos \alpha }}{{\sin \alpha + \cos \alpha }}\,\,\,\,\,\left( {dpcm} \right).\end{array}\)
b) Tính giá trị của A biết \(\tan \alpha = \frac{1}{3}\).
Theo ý a ta có: \(A = \frac{{\sin \alpha - \cos \alpha }}{{\sin \alpha + \cos \alpha }} = \frac{{\tan \alpha - 1}}{{\tan \alpha + 1}}\)
Thay \(\tan \alpha = \frac{1}{3}\) vào A ta được: \(A = \frac{{\tan \alpha - 1}}{{\tan \alpha + 1}} = \frac{{\frac{1}{3} - 1}}{{\frac{1}{3} + 1}} = - \frac{1}{2}\)
Chọn B.
Câu hỏi 13 :
Tính giá trị của các biểu thức:
Câu 1:
\(A = \frac{{\cos {{41}^0}}}{{\sin {{49}^0}}} + \tan {28^0}.\tan {62^0}\)
- A \(A = 1\)
- B \(A = 2\)
- C \(A = 0\)
- D \(A = \frac{1}{2}\)
Đáp án: B
Phương pháp giải:
Sử dụng các công thức lượng giác: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1;\)\(\,\tan \alpha .cot\alpha = 1.\)
Cho \(\angle B + \angle C = {90^0}.\) Khi đó ta có: \(\left\{ \begin{array}{l}\sin B = \cos C\\\cos B = \sin C\end{array} \right..\)
Lời giải chi tiết:
\(A = \frac{{\cos {{41}^0}}}{{\sin {{49}^0}}} + \tan {28^0}.\tan {62^0}\)
\(A = \frac{{\cos {{41}^0}}}{{\sin {{49}^0}}} + \tan {28^0}.\tan {62^0}\)\( = \frac{{\sin {{49}^0}}}{{\sin {{49}^0}}} + \tan {28^0}.cot{28^0}\)\( = 1 + 1 = 2.\)
Chọn B.
Câu 2:
\(B = {\cos ^2}{10^0} + {\cos ^2}{20^0} + {\cos ^2}{70^0} + {\cos ^2}{80^0}\)
- A \(B = 1\)
- B \(B = 2\)
- C \(B = 0\)
- D \(B = \frac{1}{2}\)
Đáp án: B
Phương pháp giải:
Sử dụng các công thức lượng giác: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1;\)\(\,\tan \alpha .cot\alpha = 1.\)
Cho \(\angle B + \angle C = {90^0}.\) Khi đó ta có: \(\left\{ \begin{array}{l}\sin B = \cos C\\\cos B = \sin C\end{array} \right..\)
Lời giải chi tiết:
\(B = {\cos ^2}{10^0} + {\cos ^2}{20^0} + {\cos ^2}{70^0} + {\cos ^2}{80^0}\)
\(\begin{array}{l}B = {\cos ^2}{10^0} + {\cos ^2}{20^0} + {\cos ^2}{70^0} + {\cos ^2}{80^0}\\ = {\cos ^2}{10^0} + {\cos ^2}{20^0} + si{n^2}{20^0} + si{n^2}{10^0}\\ = \left( {{{\cos }^2}{{20}^0} + si{n^2}{{20}^0}} \right) + \left( {{{\cos }^2}{{10}^0} + si{n^2}{{10}^0}} \right)\\ = 1 + 1 = 2.\end{array}\)
Chọn B.
Câu hỏi 14 :
Tính giá trị của các biểu thức:
Câu 1:
\(C = {(3\sin \alpha + 4\cos \alpha )^2} + {\left( {4\sin \alpha - 3\cos \alpha } \right)^2}\)
- A \(C = 5\)
- B \(C = 9\)
- C \(C = 25\)
- D \(C = 16\)
Đáp án: D
Phương pháp giải:
Sử dụng công thức tỉ số lượng giác của góc nhọn.
Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha .\cot \alpha = 1\\1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\end{array} \right..\)
Lời giải chi tiết:
\(C = {(3\sin \alpha + 4\cos \alpha )^2} + {\left( {4\sin \alpha - 3\cos \alpha } \right)^2}\)
\(\begin{array}{l}C = {\left( {3\sin \alpha + 4\cos \alpha } \right)^2} + {\left( {4\sin \alpha - 3\cos \alpha } \right)^2}\\ = 9{\sin ^2}\alpha + 24\sin \alpha \cos \alpha + 16{\cos ^2}\alpha + 16{\sin ^2}\alpha - 24\sin \alpha \cos \alpha + 9{\cos ^2}\alpha \\ = 25{\sin ^2}\alpha + 25{\cos ^2}\alpha \\ = 25\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) = 25.\end{array}\)
Chọn D.
Câu 2:
Cho biết \(\tan \alpha = \frac{2}{3}\). Tính giá trị biểu thức: \(M = \frac{{{{\sin }^3}\alpha + 3{{\cos }^3}\alpha }}{{27{{\sin }^3}\alpha - 25{{\cos }^3}\alpha }}\)
- A \(M = - \frac{1}{3}\)
- B \(M = - 1\)
- C \(M = - \frac{{89}}{{459}}\)
- D \(M = - \frac{{72}}{{459}}\)
Đáp án: C
Phương pháp giải:
Sử dụng công thức tỉ số lượng giác của góc nhọn.
Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha .\cot \alpha = 1\\1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\end{array} \right..\)
Lời giải chi tiết:
\(M = \frac{{{{\sin }^3}\alpha + 3{{\cos }^3}\alpha }}{{27{{\sin }^3}\alpha - 25{{\cos }^3}\alpha }} = \frac{{\frac{{{{\sin }^3}\alpha }}{{{{\cos }^3}\alpha }} + 3}}{{\frac{{27{{\sin }^3}\alpha }}{{{{\cos }^3}\alpha }} - 25}} = \frac{{{{\tan }^3}\alpha + 3}}{{27{{\tan }^3}\alpha - 25}}\)
Thay \(\tan \alpha = \frac{2}{3}\) vào biểu thức \(M\) ta có:
\(M = \frac{{{{\tan }^3}\alpha + 3}}{{27{{\tan }^3}\alpha - 25}} = \frac{{{{\left( {\frac{2}{3}} \right)}^3} + 3}}{{27{{\left( {\frac{2}{3}} \right)}^3} - 25}} = - \frac{{89}}{{459}}.\)
Chọn C.
Câu hỏi 15 :
Tính giá trị biểu thức:
Câu 1:
\(M = {\sin ^2}{42^o} + {\sin ^2}{43^o} + {\sin ^2}{44^o} + {\sin ^2}{45^o} + {\sin ^2}{46^o} + {\sin ^2}{47^o} + {\sin ^2}{48^o}\)
- A \(M = 3\)
- B \(M = \frac{5}{2}\)
- C \(M = \frac{3}{2}\)
- D \(M = \frac{7}{2}\)
Đáp án: D
Phương pháp giải:
Sử dụng tính chất hai góc phụ nhau: \(\alpha + \beta = {90^0} \Rightarrow \left\{ \begin{array}{l}\sin \alpha = \cos \beta \\\cos \alpha = \sin \beta \end{array} \right.\)
Sử dụng công thức lượng giác: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)
Giá trị lượng giác của một số góc đặc biệt.
Lời giải chi tiết:
\(M = {\sin ^2}{42^o} + {\sin ^2}{43^o} + {\sin ^2}{44^o} + {\sin ^2}{45^o} + {\sin ^2}{46^o} + {\sin ^2}{47^o} + {\sin ^2}{48^o}\)
\(\begin{array}{l}M = {\sin ^2}{42^o} + {\sin ^2}{43^o} + {\sin ^2}{44^o} + {\sin ^2}{45^o} + {\sin ^2}{46^o} + {\sin ^2}{47^o} + {\sin ^2}{48^o}\\ = {\sin ^2}{42^o} + {\sin ^2}{43^o} + {\sin ^2}{44^o} + {\sin ^2}{45^o} + {\cos ^2}{44^o} + {\cos ^2}{43^o} + {\cos ^2}{42^o}\\ = \left( {{\rm{si}}{{\rm{n}}^2}{{42}^o} + {\rm{co}}{{\rm{s}}^2}{{42}^o}} \right) + \left( {{{\sin }^2}{{43}^o}{\rm{ + co}}{{\rm{s}}^2}{{43}^o}} \right) + \left( {{\rm{ }}{{\sin }^2}{{44}^o} + {\rm{co}}{{\rm{s}}^2}{{44}^o}} \right) + {\sin ^2}{45^o}\\ = 1 + 1 + 1 + \frac{1}{2} = \frac{7}{2}\end{array}\)
Chọn D.
Câu 2:
\(N = {\cos ^2}{15^o} - {\cos ^2}{25^o} + {\cos ^2}{35^o} - {\cos ^2}{45^o} + {\cos ^2}{55^o} - {\cos ^2}{65^o} + {\cos ^2}{75^o}\)
- A \(N = \frac{1}{2}\)
- B \(N = 1\)
- C \(N = - 1\)
- D \(N = - \frac{1}{2}\)
Đáp án: A
Phương pháp giải:
Sử dụng tính chất hai góc phụ nhau: \(\alpha + \beta = {90^0} \Rightarrow \left\{ \begin{array}{l}\sin \alpha = \cos \beta \\\cos \alpha = \sin \beta \end{array} \right.\)
Sử dụng công thức lượng giác: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)
Giá trị lượng giác của một số góc đặc biệt.
Lời giải chi tiết:
\(N = {\cos ^2}{15^o} - {\cos ^2}{25^o} + {\cos ^2}{35^o} - {\cos ^2}{45^o} + {\cos ^2}{55^o} - {\cos ^2}{65^o} + {\cos ^2}{75^o}\)
\(\begin{array}{l}N = {\cos ^2}{15^o} - {\cos ^2}{25^o} + {\cos ^2}{35^o} - {\cos ^2}{45^o} + {\cos ^2}{55^o} - {\cos ^2}{65^o} + {\cos ^2}{75^o}\\ = {\cos ^2}{15^o} - {\cos ^2}{25^o} + {\cos ^2}{35^o} - {\cos ^2}{45^o} + {\sin ^2}{35^o} - {\sin ^2}{25^o} + {\sin ^2}{15^0}\\ = \left( {{{\cos }^2}{{15}^o} + si{n^2}{{15}^0}} \right) - \left( {{{\cos }^2}{{25}^o} + si{n^2}{{25}^0}} \right) + \left( {{{\cos }^2}{{35}^o} + si{n^2}{{35}^0}} \right) - {\cos ^2}{45^o}\\ = 1 - 1 + 1 - \frac{1}{2} = \frac{1}{2}\end{array}\)
Chọn A.
Câu hỏi 17 :
- A \(\cos \alpha = \frac{{\sqrt 5 }}{3};\,\,\tan \alpha = - \frac{2}{3};\,\,\cot \alpha = - \frac{{\sqrt 5 }}{2}\)
- B \(\cos \alpha = \frac{{\sqrt 5 }}{3};\,\,\tan \alpha = \frac{{2\sqrt 5 }}{5};\,\,\cot \alpha = \frac{{\sqrt 5 }}{2}\)
- C \(\cos \alpha = \frac{{\sqrt 2 }}{3};\,\,\tan \alpha = \sqrt 2 ;\,\,\cot \alpha = \frac{1}{2}\)
- D \(\cos \alpha = \frac{1}{3};\,\,\tan \alpha = 2;\,\,\cot \alpha = \frac{1}{2}\)
Đáp án: B
Lời giải chi tiết:
Câu hỏi 19 :
a) \(1 + {\rm{ }}{\tan ^2}x{\rm{ }} = \frac{1}{{{{\cos }^2}x}}\) b) \(1 + {\cot ^2}x = \frac{1}{{{{\sin }^2}x}}\)
c) \({\cos ^4}x-{\rm{ si}}{{\rm{n}}^4}x = 2{\cos ^2}x{\rm{ }} - 1\) d) \({\sin ^6}x + {\cos ^6}x{\rm{ }} = {\rm{ }}1 - {\rm{ }}3{\sin ^2}x.{\cos ^2}x\)
Phương pháp giải:
Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\\\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }}\end{array} \right..\)
Sử dụng hằng đẳng thức.
Lời giải chi tiết:
a) \(1 + {\rm{ }}{\tan ^2}x{\rm{ }} = \frac{1}{{{{\cos }^2}x}}\)
\(VT = 1 + {\rm{ }}{\tan ^2}x\)\( = 1 + \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}}\)\( = \frac{{{{\cos }^2}x + {{\sin }^2}x}}{{{{\cos }^2}x}}\)\( = \frac{1}{{{{\cos }^2}x}} = VP\)(đpcm)
b) \(1 + {\cot ^2}x{\rm{ }} = \frac{1}{{{{\sin }^2}x}}\)
\(VT = 1 + {\cot ^2}x{\rm{ }} = 1 + \frac{{{{\cos }^2}x}}{{{{\sin }^2}x}}\)\( = \frac{{{{\sin }^2}x + {{\cos }^2}x}}{{{{\sin }^2}x}} = \frac{1}{{{{\sin }^2}x}}\) (đpcm)
c) \({\cos ^4}x--{\sin ^4}x = 2{\cos ^2}x{\rm{ }} - 1\)
\(\begin{array}{l}{\cos ^4}x--{\sin ^4}x = \left( {{{\cos }^2}x--{{\sin }^2}x} \right)\left( {{{\cos }^2}x{\rm{ + }}{{\sin }^2}x} \right)\\ = {\cos ^2}x--{\sin ^2}x = {\cos ^2}x - \left( {1 - {{\cos }^2}x{\rm{ }}} \right)\\ = 2{\cos ^2}x{\rm{ }} - 1\,\,\,\,\left( {dpcm} \right)\end{array}\)
d. \({\sin ^6}x + {\cos ^6}x{\rm{ }} = 1 - 3{\sin ^2}x.{\cos ^2}x\)
\(\begin{array}{l}{\sin ^6}x + {\cos ^6}x = \left( {{{\sin }^2}x + {{\cos }^2}x} \right)\left( {{{\sin }^4}x - {{\sin }^2}x.{{\cos }^2}x + {{\cos }^4}x} \right)\\ = \left( {{{\sin }^4}x + {{\cos }^4}x} \right) - {\sin ^2}x.{\cos ^2}x\\ = {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2} - 2{\sin ^2}x.{\cos ^2}x - {\sin ^2}x.{\cos ^2}x\\ = 1 - 3{\sin ^2}x.{\cos ^2}x\,\,\,\,\left( {dpcm} \right)\end{array}\)
Câu hỏi 20 :
Chứng minh rằng giá trị của các biểu thức sau không phụ thuộc vào giá trị của góc nhọn \(\alpha \).
a) \({\left( {\cos \alpha - \sin \alpha } \right)^2} + {\left( {\cos \alpha + \sin \alpha } \right)^2}\)
b) \(\frac{{{{(c{\rm{os}}\alpha - \sin \alpha )}^2} - {{(c{\rm{os}}\alpha + \sin \alpha )}^2}}}{{c{\rm{os}}\alpha .\sin \alpha }}\)
Phương pháp giải:
Sử dụng công thức lượng giác: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)
Sử dụng hằng đẳng thức.
Lời giải chi tiết:
a) \({\left( {\cos \alpha - {\rm{sin}}\alpha } \right)^2} + {\left( {\cos \alpha - {\rm{sin}}\alpha } \right)^2}\)
\(\begin{array}{l}{\left( {\cos \alpha - {\rm{sin}}\alpha } \right)^2} + {\left( {\cos \alpha + {\rm{sin}}\alpha } \right)^2}\\ = {\cos ^2}\alpha - 2{\rm{sin}}\alpha .\cos \alpha + {\rm{si}}{{\rm{n}}^2}\alpha + {\cos ^2}\alpha + 2{\rm{sin}}\alpha \cos \alpha + {\rm{si}}{{\rm{n}}^2}\alpha \\ = 2{\rm{si}}{{\rm{n}}^2}\alpha + 2{\cos ^2}\alpha = 2\left( {{\rm{si}}{{\rm{n}}^2}\alpha + {{\cos }^2}\alpha } \right) = 2.1 = 2.\end{array}\)
Vậy giá trị của các biểu thức trên không phụ thuộc vào giá trị của góc nhọn \(\alpha \).
b. \(\frac{{{{\left( {\cos \alpha - \sin \alpha } \right)}^2} - {{\left( {\cos \alpha + \sin \alpha } \right)}^2}}}{{\cos \alpha .\sin \alpha }}\)
\(\begin{array}{l}\frac{{{{\left( {\cos \alpha - \sin \alpha } \right)}^2} - {{\left( {\cos \alpha + \sin \alpha } \right)}^2}}}{{\cos \alpha .\sin \alpha }}\\ = \frac{{{{\cos }^2}\alpha - 2\sin \alpha .\cos \alpha + {{\sin }^2}\alpha - {{\cos }^2}\alpha - 2\sin \alpha \cos \alpha - {{\sin }^2}\alpha }}{{\cos \alpha .\sin \alpha }}\\ = \frac{{ - 4\sin \alpha \cos \alpha }}{{\cos \alpha .\sin \alpha }} = - 4.\end{array}\)
Vậy giá trị của các biểu thức trên không phụ thuộc vào giá trị của góc nhọn \(\alpha \).
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Các bài khác cùng chuyên mục