TUYENSINH247 ĐỒNG GIÁ 299K TOÀN BỘ KHOÁ HỌC TỪ LỚP 1-LỚP 12

TẶNG KHOÁ ĐỀ THI HK2 TỚI 599K

  • Bắt đầu sau
  • 03

    Giờ

  • 20

    Phút

  • 31

    Giây

Xem chi tiết

Đề thi giữa kì 1 Toán 8 - Đề số 3 - Kết nối tri thức


Câu 1: Cho các biểu thức ({x^2} - 2 + 4x{y^2};frac{x}{y} + 2{y^2};2023;x(x - y)). Có bao nhiêu đa thức trong các biểu thức trên?

Tổng hợp đề thi học kì 2 lớp 8 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Khoa học tự nhiên

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Phần trắc nghiệm (3 điểm)

Câu 1: Cho các biểu thức x22+4xy2;xy+2y2;2023;x(xy)x22+4xy2;xy+2y2;2023;x(xy). Có bao nhiêu đa thức trong các biểu thức trên?

A. 1.

B. 2.

C. 3.

D. 4.

Câu 2: Thu gọn đa thức 2x2y7xy2+3x2y+7xy22x2y7xy2+3x2y+7xy2 ta được

A. P=x2yP=x2y.

B. P=x2yP=x2y.

C. P=x2y+14xy2P=x2y+14xy2.

D. 5x2y14xy25x2y14xy2.

Câu 3: Bậc của đa thức 4x2yx4+5xy2+3xy+x44x2yx4+5xy2+3xy+x4

A. 3.

B. 4.

C. 5.

D. 6.

Câu 4: Biểu thức (4x + y).(4x – y) bằng

A. 16x2y216x2y2.

B. 16x2+y216x2+y2.

C. 16x2+4xy+y216x2+4xy+y2.

D. 16x28xy+y216x28xy+y2.

Câu 5: Biểu thức (4x+y)(16x24xy+y2)(4x+y)(16x24xy+y2) bằng

A. 64x3+y364x3+y3.

B. 64x3y364x3y3.

C. 64x39x2y+y364x39x2y+y3.

D. 64x39xy2+y364x39xy2+y3.

Câu 6: Giá trị nhỏ nhất của biểu thức A=(x15)2+2023A=(x15)2+2023

A. 15.

B. 2023.

C. 2248.

D. 2006.

Câu 7: Có bao nhiêu số nguyên dương m biết đa thức A=8x2y3+6x3y2A=8x2y3+6x3y2 chia hết cho B=2x2ymB=2x2ym

A. 0.

B. 1.

C. 2.

D. 3.

Câu 8: Giữa một cái sân hình vuông cạnh a mét, người ta xây một bồn hoa hình vuông có cạnh b mét (a > b). Đa thức S biểu thị diện tích còn lại của cái sân là

A. 4a – 4b.

B. a2 – b2.

C. (a – b)2.

D. b2.

Câu 9: Cho hình bình hành ABCD biết AB = 6cm, BC = 4cm. Khi đó chu vi của hình bình hành ABCD là

A. 10cm.

B. 24cm.

C. 20cm.

D. 48cm.

Câu 10: Chọn câu sai trong các câu sau: Tứ giác có thể có:

A. 3 góc tù, 1 góc nhọn.

B. 3 góc vuông, 1 góc nhọn.

C. 2 góc tù, 2 góc nhọn.

D. 3 góc nhọn, 1 góc tù

Câu 11: Một hình thang vuông có một góc bằng 750, các góc còn lại của hình thang đó là:

A. 1050; 1050; 750.

B.  900; 1050; 750.

C. 1050; 750; 750.

D. 1050; 900; 900.

Câu 12: Chọn câu đúng nhất

A. Hình thang cân là hình thang có hai góc kề một đáy bằng nhau.

B. Trong hình thang cân, hai cạnh bên bằng nhau.

C. Trong hình thang cân, hai đường chéo bằng nhau.

D. Cả A, B, C đều đúng.

 

Phần tự luận (7 điểm)

Bài 1. (2 điểm) Cho đa thức 

M=x2y13y23x2yz5+8x2y+23x2yz5.M=x2y13y23x2yz5+8x2y+23x2yz5..

a) Thu gọn đa thức M.

b) Tìm bậc của đa thức M.

c) Tính giá trị của M khi x = 1; y = 3; z = 2023

Bài 2. (1,5 điểm)

1) Tìm x, biết:

a) 3x(12x4)9x(4x3)=303x(12x4)9x(4x3)=30;

b) 3(x+4)x28x16=03(x+4)x28x16=0

2) Bà Khanh dự định mua x hộp sữa (mỗi hộp giá 21 nghìn đồng) và y hộp kẹo (mỗi hộp giá 32 nghìn đồng). Nhưng khi đến cửa hàng, bà Khanh thấy giá sữa đã giảm 2 nghìn đồng mỗi hộp (giá kẹo như cũ) nên quyết định mua thêm 3 hộp sữa và bớt đi 1 hộp kẹo. Viết biểu thức biểu thị số tiền bà Khanh phải trả cho cửa hàng.

Bài 3. (3 điểm) Cho hình bình hành ABCD có E, F theo thứ tự là trung điểm của AB, CD.

a) Tứ giác DEBF là hình gì? Vì sao?

b) Chứng minh rằng các đường thẳng AC, BD, EF đồng quy tại một điểm.

c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh rằng M và N đối xứng nhau qua O.

Bài 4. (0,5 điểm) Cho a; b; c thoả mãn:

a2022+b2022+c2022=a1011b1011+b1011c1011+c1011a1011a2022+b2022+c2022=a1011b1011+b1011c1011+c1011a1011

Tính giá trị của biểu thức

A=(ab)2020+(bc)2021+(ac)2022A=(ab)2020+(bc)2021+(ac)2022

---- Hết ----

Lời giải

Phần trắc nghiệm (3 điểm)

1. C

2. A

3. A

4. B

5. A

6. B

7. C

8. D

9. C

10. B

11. D

12. D

 

Câu 1: Cho các biểu thức x22+4xy2;xy+2y2;2023;x(xy)x22+4xy2;xy+2y2;2023;x(xy). Có bao nhiêu đa thức trong các biểu thức trên?

A. 1.

B. 2.

C. 3.

D. 4.

Phương pháp

Dựa vào khái niệm đa thức: Đa thức là tổng của những đơn thức; mỗi đơn thức trong tổng gọi là một hạng tử của đa thức đó.

Lời giải

x22+4xy2x22+4xy2; 2023;x(xy)2023;x(xy) là những đa thức vì là tổng của những đơn thức.

xy+2y2xy+2y2 không phải đa thức vì xyxy không phải là đơn thức.

Đáp án C.

Câu 2: Thu gọn đa thức 2x2y7xy2+3x2y+7xy22x2y7xy2+3x2y+7xy2 ta được

A. P=x2yP=x2y.

B. P=x2yP=x2y.

C. P=x2y+14xy2P=x2y+14xy2.

D. 5x2y14xy25x2y14xy2.

Phương pháp

Cộng, trừ các hạng tử đồng dạng để rút gọn.

Lời giải

P=2x2y7xy2+3x2y+7xy2=(2x2y+3x2y)+(7xy2+7xy2)=x2yP=2x2y7xy2+3x2y+7xy2=(2x2y+3x2y)+(7xy2+7xy2)=x2y

Đáp án A.

Câu 3: Bậc của đa thức 4x2yx4+5xy2+3xy+x44x2yx4+5xy2+3xy+x4

A. 3.

B. 4.

C.  5.

D. 6.

Phương pháp

Sử dụng công thức A2B2=(AB)(A+B)A2B2=(AB)(A+B).

Lời giải

4x2yx4+5xy2+3xy+x4=4x2y+5xy2+3xy+(x4+x4)=4x2y+5xy2+3xy4x2yx4+5xy2+3xy+x4=4x2y+5xy2+3xy+(x4+x4)=4x2y+5xy2+3xy

Đa thức có 3 hạng tử: 4x2y;5xy2;3xy4x2y;5xy2;3xy.

Hạng tử 4x2y4x2y có bậc là 2 + 1 = 3.

Hạng tử 5xy25xy2 có bậc là 1 + 2 = 3.

Hạng tử 3xy3xy có bậc là 1 + 1 = 2.

Vì bậc cao nhất của các hạng tử trong đa thức là 3 nên bậc của đa thức là 3.

Đáp án A.

Câu 4: Biểu thức (4x + y).(4x – y) bằng

A. 16x2+y216x2+y2.

B. 16x2y216x2y2.

C. 16x2+4xy+y216x2+4xy+y2.

D. 16x28xy+y216x28xy+y2.

Phương pháp

Dựa vào kiến thức của những hằng đẳng thức đáng nhớ.

Lời giải

(4x+y)(4xy)=16x2y2(4x+y)(4xy)=16x2y2.

Đáp án B.

Câu 5: Biểu thức (4x+y)(16x24xy+y2)(4x+y)(16x24xy+y2) bằng

A. 64x3+y364x3+y3.

B. 64x3y364x3y3.

C. 64x39x2y+y364x39x2y+y3.

D. 64x39xy2+y364x39xy2+y3.

Phương pháp

Dựa vào kiến thức của những hằng đẳng thức đáng nhớ.

Lời giải

(4x+y)(16x24xy+y2)=(4x)3+y3=64x3+y3(4x+y)(16x24xy+y2)=(4x)3+y3=64x3+y3.

Đáp án A.

Câu 6: Giá trị nhỏ nhất của biểu thức A=(x15)2+2023A=(x15)2+2023

A. 15.

B. 2023.

C. 2248.

D. 2006.

Phương pháp

Dựa vào đặc điểm của bậc chẵn.

Lời giải

(x15)20(x15)20 với mọi xR nên A=(x15)2+20232023 với mọi xR.

Vậy giá trị nhỏ nhất của biểu thức A là 2023.

Đáp án B.

Câu 7: Có bao nhiêu số nguyên dương m biết đa thức A=8x2y3+6x3y2 chia hết cho B=2x2ym

A. 0.

B.  1.

C. 2.

D. 3.

Phương pháp

Dựa vào quy tắc chia hết của đa thức cho đơn thức.

Lời giải

Để đa thức A chia hết cho đơn thức B thì mọi biến của đa thức A phải có bậc lớn hơn hoặc bằng bậc của các biến trong đơn thức B.

Biến y trong đa thức A có bậc nhỏ nhất là 2, vì vậy bậc của biến y trong B phải nhỏ hơn hoặc bằng 2. Bậc của biến y trong B có thể là hai giá trị: 1 hoặc 2. (0 không phải số nguyên dương).

Đáp án C.

Câu 8: Giữa một cái sân hình vuông cạnh a mét, người ta xây một bồn hoa hình vuông có cạnh b mét (a > b). Đa thức S biểu thị diện tích còn lại của cái sân là

 

A. 4a – 4b.

B. b2.

C. (a – b)2.

D. a2 – b2.

Phương pháp

Dựa vào công thức tính diện tích hình vuông để viết đa thức.

Lời giải

Đơn thức biểu diễn diện tích cái sân là: a.a = a2.

Đơn thức biểu diễn diện tích bồn hoa là: b.b = b2.

Đa thức S biểu thị diện tích còn lại của cái sân là: S = a2 – b2.

Đáp án D.

Câu 9: Cho hình bình hành ABCD biết AB = 6cm, BC = 4cm. Khi đó chu vi của hình bình hành ABCD là

A. 10cm.

B. 24cm.

C. 20cm.

D. 48cm.

Phương pháp

Dựa vào đặc điểm về cạnh của hình bình hành.

Lời giải

Vì hình bình hành ABCD có AB = CD; BC = AD nên chu vi hình bình hành ABCD là: 6.2 + 4.2 = 20 (cm).

Đáp án C.

Câu 10: Chọn câu sai trong các câu sau: Tứ giác có thể có:

A. 3 góc tù, 1 góc nhọn.

B. 3 góc vuông, 1 góc nhọn.

C. 2 góc tù, 2 góc nhọn.

D. 3 góc nhọn, 1 góc tù

Phương pháp

Dựa vào định lí tổng các góc của một tứ giác bằng 3600.

Lời giải

Nếu tứ giác có 3 góc vuông, 1 góc nhọn thì tổng 3 góc vuông là 3.900 = 270 => Góc còn lại phải bằng 3600 – 2700 = 900 > góc nhọn nên đáp án B sai.

Đáp án B.

Câu 11: Một hình thang vuông có một góc bằng 750, các góc còn lại của hình thang đó là:

A. 1050; 1050; 750.

B.  900; 1050; 750.

C. 1050; 750; 750.

D. 1050; 900; 900.

Phương pháp

Dựa vào định lí tổng các góc của một tứ giác bằng 3600 .

Lời giải

Vì hình thang là hình thang vuông nên có hai góc bằng 900 và có một góc bằng 750 nên góc còn lại bằng:

3600900900750=1050.

Đáp án D.

Câu 12: Chọn câu đúng nhất

A. Hình thang cân là hình thang có hai góc kề một đáy bằng nhau.

B. Trong hình thang cân, hai cạnh bên bằng nhau.

C. Trong hình thang cân, hai đường chéo bằng nhau.

D. Cả A, B, C đều đúng.

Phương pháp

Dựa vào tính chất của hình thang cân.

Lời giải

Các phương án A, B, C đều là các tính chất của hình thang cân nên đáp án đúng nhất là đáp án D.

Đáp án D.

 

Phần tự luận. (7 điểm)

Bài 1. (2 điểm) Cho đa thức 

M=x2y13y23x2yz5+8x2y+23x2yz5..

a) Thu gọn đa thức M.

b) Tìm bậc của đa thức M.

c) Tính giá trị của M khi x = 1; y = 3; z = 2023

Phương pháp

a) Sử dụng các quy tắc tính của đa thức để rút gọn đa thức.

b) Sử dụng kiến thức bậc của đa thức để tìm bậc của M.

c) Thay x, y, z vào để tính giá trị.

Lời giải

a) Thu gọn:

M=x2y13y23x2yz5+8x2y+23x2yz5=x2y+8x2y13y23x2yz5+23x2yz5=(x2y+8x2y)13y(23x2yz523x2yz5)=9x2y13y0=9x2y13y

Vậy M=9x2y13y.

b) Đa thức M có hai hạng tử: 9x2y và 13y.

+ Hạng tử 9x2y có bậc là 2 + 1 = 3.

+ Hạng tử 13y có bậc là 1.

Vì 3 > 1 nên bậc của đa thức M là 3.

c) Thay x = 1; y = 3; z = 2023 thì M=9.12.313.3=271=26.

Bài 2. (1,5 điểm)

1) Tìm x, biết:

a) 3x(12x4)9x(4x3)=30;

b) 3(x+4)x28x16=0

2) Bà Khanh dự định mua x hộp sữa (mỗi hộp giá 21 nghìn đồng) và y hộp kẹo (mỗi hộp giá 32 nghìn đồng). Nhưng khi đến cửa hàng, bà Khanh thấy giá sữa đã giảm 2 nghìn đồng mỗi hộp (giá kẹo như cũ) nên quyết định mua thêm 3 hộp sữa và bớt đi 1 hộp kẹo. Viết biểu thức biểu thị số tiền bà Khanh phải trả cho cửa hàng.

Phương pháp

1) Phân tích đa thức thành nhân tử để tìm x.

2) Dựa vào kiến thức của đa thức để tính số tiền bà Khanh phải trả cho cửa hàng.

Lời giải

1)

a)

3x(12x4)9x(4x3)=3036x212x36x2+27x=3012x+27x=3015x=30x=2

Vậy x = 2.

b) 3(x+4)x28x16=0

3(x+4)(x2+8x+16)=03(x+4)(x+4)2=0(x+4)(3x4)=0(x+4)(1x)=0[x+4=01x=0[x=4x=1

Vậy x = -4 hoặc x = -1.

2) Sữa giảm 2 nghìn đồng mỗi hộp nên giá mỗi hộp sữa tại cửa hàng là 21 – 2 = 19 (nghìn đồng).

Giá kẹo như cũ nên giá mỗi hộp kẹo tại cửa hàng vẫn là 32 nghìn đồng.

Tại cửa hàng, bà Khanh quyết định mua thêm 3 hộp sữa và bớt đi 1 hộp kẹo. Vậy bà Khanh đã mua x + 3 hộp sữa và y − 1 hộp kẹo.

Vậy số tiền bà Khanh phải trả cho cửa hàng là (x + 3).19 + (y − 1).32 (nghìn đồng).

Thu gọn biểu thức trên: (x+3).19+(y1).32

=19x+3.19+32y32=19x+57+32y32=19x+32y+25

Vậy biểu thức biểu thị số tiền bà Khanh phải trả cho cửa hàng là 19x+32y+25 (nghìn đồng).

Bài 3. (2,5 điểm) ) Cho hình bình hành ABCD có E, F theo thứ tự là trung điểm của AB, CD.

a) Tứ giác DEBF là hình gì? Vì sao?

b) Chứng minh rằng các đường thẳng AC, BD, EF đồng quy tại một điểm.

c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh rằng M và N đối xứng nhau qua O.

Phương pháp

a) Chứng minh tứ giác DEBF có một cặp cạnh đối song song và bằng nhau nên là hình bình hành.

b) Chứng minh giao điểm của AC với BC và giao điểm của BD với EF trùng nhau.

c) - Chứng minh M là trọng tâm của ΔABD OM=13OA

- Chứng minh N là trọng tâm của ΔBCD ON=13OC

- Mà OA=OCOM=ON

Lời giải

 

a) Vì ABCD là hình bình hành nên AB // CD, AB = CD.

Vì E, F là trung điểm của AB, CD nên AE = EB = CF = FD (vì AB = CD).

Xét tứ giác DEBF có:

EB // DF (vì AB // CD)

EB = DF (cmt)

=> DEBF là hình bình hành (tứ giác có cặp cạnh đối song song và bằng nhau).

b) Vì ABCD là hình bình hành nên AC và BD cắt nhau tại trung điểm của mỗi đường. Gọi O là giao điểm của AC và BD, khi đó O là trung điểm của AC, O là trung điểm của BD. (1)

Vì DEBF là hình bình hành nên BD và EF cắt nhau tại trung điểm của mỗi đường. Vì O là trung điểm của BD nên O cùng là trung điểm của EF. Khi đó BD và EF cắt nhau tại O. (2)

Từ (1) và (2) suy ra AC, BD, EF đồng quy tại điểm O.

c) Xét tam giác ABD có:

DE là đường trung tuyến của tam giác ABD (vì E là trung điểm của AB)

AO là đường trung tuyến của tam giác ABD (vì O là trung điểm của BD)

DE cắt AO tại M (vì giao điểm của AC và DE là M)

Suy ra M là trọng tâm của tam giác ABD nên AM = 23AO và OM = 13AO.

Tương tự, ta chứng minh được N là trọng tâm của tam giác BCD nên CN = 23OC và ON = 13OC.

Mà AO = OC (vì O là trung điểm của AC).

=> OM = ON.

Bài 4. (0,5 điểm) Cho a; b; c thoả mãn:

a2022+b2022+c2022=a1011b1011+b1011c1011+c1011a1011

Tính giá trị của biểu thức

2(a2022+b2022+c2022)=2(a1011b1011+b1011c1011+c1011a1011)

Phương pháp

Dựa vào hằng đẳng thức a2b2=(ab)(a+b) để chứng minh.

Lời giải

Ta có: a2022+b2022+c2022=a1011b1011+b1011c1011+c1011a1011

2(a2022+b2022+c2022)=2(a1011b1011+b1011c1011+c1011a1011)

(a20222a1011b1011+b2022)+(b20222b1011c1011+c2022)+(c20222c1011a1011+a2022)=0

(a1011b1011)2+(b1011c1011)2+(c1011a1011)2=0

x20 với x nên dấu “=” xảy ra khi và chỉ khi

a1011b1011=b1011c1011=c1011a1011=0a=b=c

A=(ab)2020+(bc)2021+(ac)2022=0


Bình chọn:
3.3 trên 4 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.