Đề kiểm tra 15 phút - Đề số 2 - Bài 1 - Chương 2 - Đại số 7


Giải Đề kiểm tra 15 phút - Đề số 2 - Bài 1 - Chương 2 - Đại số 7

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1:   Cho y tỉ lệ thuận với x theo hệ số tỉ lệ k, với \({x_1};{x_2}\) có hai giá trị tương ứng là \({y_1};{y_2}\) và \({x_1} + {x_2} = 4;{y_1} + {y_2} = 8\). Tìm k.

Bài 2: Cho x, y là hai đại lượng tỉ lệ thuận. 

Điền số thích hợp vào ô trống trong bảng sau: 

x

-2

1

3

 

y

 

-2

 

3

 

LG bài 1

Phương pháp giải:

Nếu \(y\) tỉ lệ thuận với \(x\) theo hệ số tỉ lệ \(k\) thì \(y=kx\) 

Tỉ số hai giá trị tương ứng của hai đại lượng tỉ lệ thuận luôn không đổi và bằng hệ số tỉ lệ.

\( \dfrac{y_{1}}{x_{1}}= \dfrac{y_{2}}{x_{2}}= \dfrac{y_{3}}{x_{3}} = ...= k\)

Lời giải chi tiết:

Vì y tỉ lệ thuận với x theo hệ số tỉ lệ k nên \(y = kx\Rightarrow {{{y}} \over {{x}}}=k \)

\( \Rightarrow {{{y_1}} \over {{x_1}}} = {{{y_2}} \over {{x_2}}}=k \)

Theo tính chất dãy tỉ số bằng nhau ta có:  

\( k={{{y_1}} \over {{x_1}}} = {{{y_2}} \over {{x_2}}} \)\(= {{{y_1} + {y_2}} \over {{x_1} + {x_2}}} ={8 \over 4} =2\)

Vậy \(k = 2\). 

LG bài 2

Phương pháp giải:

Nếu \(y\) tỉ lệ thuận với \(x\) theo hệ số tỉ lệ \(k\) thì \(y=kx\) 

Thay \(x = 1\) và \(y = -2\) vào công thức trên để tìm k, từ đó tìm các giá trị còn lại trong bảng.

Lời giải chi tiết:

Vì x, y là hai đại lượng tỉ lệ thuận nên ta có công thức: \(y = kx\)

Thay \(x = 1\) và \(y = -2\) vào công thức trên ta được:

\( - 2 = k.  1 \Rightarrow k =  - 2.\)

Vậy \(y =  - 2x\). 

+) Với \(x=-2\Rightarrow y=-2.(-2)=4\) 

+) Với \(x=3\Rightarrow y=-2.3=-6\)

+) Với \(x=-\frac{3}2\Rightarrow y=-2.\frac{-3}2=3\)

Từ đó ta được kết quả cho trong bảng như sau: 

x

-2

1

3

 \(-3\over 2\)

y

 4

-2

 -6

3

Loigiaihay.com


Bình chọn:
4.2 trên 17 phiếu

>> Xem thêm

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí