Gọi \(S\) là tập nghiệm của phương trình \(\sqrt {5{x^2} + 4x} - \sqrt {{x^2} - 3x - 18} = 5\sqrt x \). Số phần tử của \(S\) là:
-
A.
\(1\)
-
B.
\(4\)
-
C.
\(3\)
-
D.
\(2\)
- Chuyển vế đưa về hai vế đều không âm, bình phương hai vế.
- Tách nhóm các số hạng đưa về dạng phương trình đặc biệt.
\(\sqrt {5{x^2} + 4x} - \sqrt {{x^2} - 3x - 18} = 5\sqrt x \,\,\,\left( 1 \right)\)
(ĐK : \(\left\{ \begin{array}{l}5{x^2} + 4x \ge 0\\{x^2} - 3x - 18 \ge 0\\x \ge 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x \ge 0,x \le - \dfrac{4}{5}\\x \ge 6,x \le - 3\\x \ge 0\end{array} \right. \Leftrightarrow x \ge 6\))
Khi đó \(\left( 1 \right) \Leftrightarrow \sqrt {5{x^2} + 4x} = 5\sqrt x + \sqrt {{x^2} - 3x - 18} \)
\( \Leftrightarrow 5{x^2} + 4x = 25x + {x^2} - 3x - 18 + 10\sqrt x .\sqrt {{x^2} - 3x - 18} \)
\( \Leftrightarrow 4{x^2} - 18x + 18 = 10\sqrt {x\left( {{x^2} - 3x - 18} \right)} \)
\( \Leftrightarrow 2{x^2} - 9x + 9 = 5\sqrt {x\left( {x - 6} \right)\left( {x + 3} \right)} \)
\( \Leftrightarrow 2{x^2} - 12x + 3x + 9 = 5\sqrt {\left( {{x^2} - 6x} \right)\left( {x + 3} \right)} \)
\( \Leftrightarrow 2\left( {{x^2} - 6x} \right) + 3\left( {x + 3} \right) = 5\sqrt {{x^2} - 6x} .\sqrt {x + 3} \)
Dễ thấy \(x = 6\) không là nghiệm phương trình nên với \(x > 6\) ta chia cả hai vế cho \({x^2} - 6x > 0\) ta được :
\(2 + 3.\dfrac{{x + 3}}{{{x^2} - 6x}} = 5.\dfrac{{\sqrt {x + 3} }}{{\sqrt {{x^2} - 6x} }}\,\,\left( 2 \right)\)
Đặt \(\dfrac{{\sqrt {x + 3} }}{{\sqrt {{x^2} - 6x} }} = t > 0\) thì \(\left( 2 \right)\) trở thành \(3{t^2} - 5t + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\left( {TM} \right)\\t = \dfrac{2}{3}\left( {TM} \right)\end{array} \right.\)
+ Nếu \(t = 1\) thì \(\sqrt {x + 3} = \sqrt {{x^2} - 6x} \)\( \Leftrightarrow x + 3 = {x^2} - 6x\)\( \Leftrightarrow {x^2} - 7x - 3 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{7 + \sqrt {61} }}{2}\left( {TM} \right)\\x = \dfrac{{7 - \sqrt {61} }}{2}\left( L \right)\end{array} \right.\)
+ Nếu $t = \dfrac{2}{3}$ thì \(\sqrt {x + 3} = \dfrac{2}{3}\sqrt {{x^2} - 6x} \) \( \Leftrightarrow x + 3 = \dfrac{4}{9}\left( {{x^2} - 6x} \right)\) \( \Leftrightarrow 4{x^2} - 33x - 27 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = 9\left( {TM} \right)\\x = - \dfrac{3}{4}\left( L \right)\end{array} \right.\)
Vậy phương trình đã cho có tập nghiệm \(S = \left\{ {\dfrac{{7 + \sqrt {61} }}{2};9} \right\}\) hay \(S\) có \(2\) phần tử.
Đáp án : D
Các bài tập cùng chuyên đề
Phương trình: $\sqrt {x - 1} = x - 3$ có tập nghiệm là:
Số nghiệm của phương trình $\sqrt {{x^2} + 2x + 4} = \sqrt {2 - x} $ là:
Tập nghiệm của phương trình: $\sqrt {3 - x} = \sqrt {x + 2} + 1$
Số nghiệm của phương trình $\sqrt[3]{{x + 1}} + \sqrt[3]{{x + 2}} + \sqrt[3]{{x + 3}} = 0$ là:
Tập nghiệm của phương trình $\sqrt {x - 2} - \dfrac{{x + 5}}{{\sqrt {7 - x} }} = 0$ là:
Tích các nghiệm của phương trình $\sqrt {x + 2} + \sqrt {5 - 2{\rm{x}}} = \sqrt {2{\rm{x}}} + \sqrt {7 - 3{\rm{x}}} $ bằng:
Tập nghiệm của phương trình $\sqrt {x + 5 - 4\sqrt {x + 1} } + \sqrt {x + 2 - 2\sqrt {x + 1} } = 1$ là:
Số nghiệm của phương trình$\sqrt {{{\rm{x}}^4} - 2{{\rm{x}}^2} + 1} = 1 - x$ là:
Tập nghiệm của phương trình $\sqrt {x + 3} - \sqrt {6 - x} = 3 + \sqrt {\left( {x + 3} \right)\left( {6 - x} \right)} $là:
Số nghiệm của phương trình ${x^2} - 6{\rm{x}} + 9 = 4\sqrt {{x^2} - 6{\rm{x}} + 6} $ là:
Số nghiệm của phương trình $\sqrt[3]{{x + 24}} + \sqrt {12 - x} = 6$là:
Tổng bình phương các nghiệm của phương trình $\dfrac{2}{{\sqrt {x + 1} + \sqrt {3 - x} }} = 1 + \sqrt {3 + 2{\rm{x}} - {x^2}} $ là:
Tổng hai nghiệm của phương trình $5\sqrt x + \dfrac{5}{{2\sqrt x }} = 2{\rm{x}} + \dfrac{1}{{2{\rm{x}}}} + 4$ là:
Tập nghiệm của phương trình $\sqrt {3{{\rm{x}}^2} + 6{\rm{x}} + 16} + \sqrt {{{\rm{x}}^2} + 2{\rm{x}}} = 2\sqrt {{{\rm{x}}^2} + 2{\rm{x}} + 4} $ là:
Tổng các nghiệm của phương trình $4{x^2} - 12x - 5\sqrt {{4x^2} - 12x + 11} + 15 = 0$ bằng:
Tập nghiệm của phương trình ${x^2} + 3{\rm{x}} + 1 = \left( {x + 3} \right)\sqrt {{x^2} + 1} $ là:
Số nghiệm của phương trình $\sqrt {2{\rm{x}} - 1} + {x^2} - 3{\rm{x + 1 = 0}}$ là:
Cho phương trình $2{{\rm{x}}^2} + 3{\rm{x}} - 14 = 2\sqrt[3]{{2{{\rm{x}}^2} + 3{\rm{x}} - 10}}$ . Giả sử ${x_1},{x_2}$ là 2 nghiệm của phương trình. Tính giá trị biểu thức $A = \sqrt {{x_1}^2 + {x_2}^2 - 4{{\rm{x}}_1}.{x_2}} $
Tổng bình phương các nghiệm của phương trình $\sqrt {4{{\rm{x}}^2} + x + 6} = 4{\rm{x}} - 2 + 7\sqrt {x + 1} $ là:
Số nghiệm của phương trình $3\sqrt {x + 2} - 6\sqrt {2 - x} + 4\sqrt {4 - {x^2}} = 10 - 3{\rm{x}}$