Đề bài

Tập nghiệm của phương trình ${x^2} + 3{\rm{x}} + 1 = \left( {x + 3} \right)\sqrt {{x^2} + 1} $ là:

  • A.

    $\left\{ { - 2\sqrt 2 } \right\}$

  • B.

    \(\emptyset \)

  • C.

    $\left\{ {2\sqrt 2 } \right\}$

  • D.

    $\left\{ { \pm 2\sqrt 2 } \right\}$

Phương pháp giải

+ Đặt $\sqrt {{x^2} + 1}  = u\left( {u \ge 0} \right);x + 3 = v$, đưa phương trình về dạng phương trình tích để tìm $u,v$

+ Thay giá trị $u,v$ tìm được vào phương trình ban đầu $ \Rightarrow x$

Lời giải của GV Loigiaihay.com

Ta có: ${x^2} + 3{\rm{x}} + 1 = \left( {x + 3} \right)\sqrt {{x^2} + 1}  $ $\Leftrightarrow \left( {{x^2} + 1} \right) + 3\left( {x + 3} \right) - 9 = \left( {x + 3} \right)\sqrt {{x^2} + 1} $       

Đặt $\sqrt {{x^2} + 1}  = u\left( {u \ge 0} \right);x + 3 = v$

Phương trình trở thành:

${u^2} + 3v - 9 = uv \Leftrightarrow {u^2} + 3v - 9 - uv = 0 \Leftrightarrow \left( {{u^2} - 9} \right) - v(u - 3) = 0 \Leftrightarrow \left( {u - 3} \right)\left( {u + 3 - v} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}u = 3\,\,\,\left( {tm} \right)\\u + 3 - v = 0\end{array} \right.$

+) Với $u = 3 \Rightarrow \sqrt {{x^2} + 1}  = 9 $ $\Leftrightarrow {x^2} + 1 = 9 \Leftrightarrow x =  \pm 2\sqrt 2 $

+) Với $u + 3-v = 0$ $ \Rightarrow \sqrt {{x^2} + 1}  + 3 - (x + 3) = 0$ $ \Leftrightarrow \sqrt {{x^2} + 1}  = x \Leftrightarrow {x^2} + 1 = {x^2}$(vô nghiệm)

Vậy tập nghiệm của phương trình là: $S = \left\{ { \pm 2\sqrt 2 } \right\}$

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Phương trình: $\sqrt {x - 1}  = x - 3$ có tập nghiệm là:

Xem lời giải >>
Bài 2 :

Số nghiệm của phương trình $\sqrt {{x^2} + 2x + 4}  = \sqrt {2 - x} $ là:

Xem lời giải >>
Bài 3 :

Tập nghiệm của phương trình: $\sqrt {3 - x}  = \sqrt {x + 2}  + 1$

Xem lời giải >>
Bài 4 :

Số nghiệm của phương trình $\sqrt[3]{{x + 1}} + \sqrt[3]{{x + 2}} + \sqrt[3]{{x + 3}} = 0$ là:

Xem lời giải >>
Bài 5 :

Tập nghiệm của phương trình $\sqrt {x - 2}  - \dfrac{{x + 5}}{{\sqrt {7 - x} }} = 0$ là:

Xem lời giải >>
Bài 6 :

Tích các nghiệm của phương trình $\sqrt {x + 2}  + \sqrt {5 - 2{\rm{x}}}  = \sqrt {2{\rm{x}}}  + \sqrt {7 - 3{\rm{x}}} $ bằng:

Xem lời giải >>
Bài 7 :

Tập nghiệm của phương trình $\sqrt {x + 5 - 4\sqrt {x + 1} }  + \sqrt {x + 2 - 2\sqrt {x + 1} }  = 1$ là:

Xem lời giải >>
Bài 8 :

Số nghiệm của phương trình$\sqrt {{{\rm{x}}^4} - 2{{\rm{x}}^2} + 1}  = 1 - x$ là:

Xem lời giải >>
Bài 9 :

Tập nghiệm của phương trình $\sqrt {x + 3}  - \sqrt {6 - x}  = 3 + \sqrt {\left( {x + 3} \right)\left( {6 - x} \right)} $là:

Xem lời giải >>
Bài 10 :

Số nghiệm của phương trình ${x^2} - 6{\rm{x}} + 9 = 4\sqrt {{x^2} - 6{\rm{x}} + 6} $ là:

Xem lời giải >>
Bài 11 :

Số nghiệm của phương trình $\sqrt[3]{{x + 24}} + \sqrt {12 - x}  = 6$là:

Xem lời giải >>
Bài 12 :

Tổng bình phương các nghiệm của phương trình $\dfrac{2}{{\sqrt {x + 1}  + \sqrt {3 - x} }} = 1 + \sqrt {3 + 2{\rm{x}} - {x^2}} $ là:

Xem lời giải >>
Bài 13 :

Tổng hai nghiệm của phương trình  $5\sqrt x  + \dfrac{5}{{2\sqrt x }} = 2{\rm{x}} + \dfrac{1}{{2{\rm{x}}}} + 4$ là:

Xem lời giải >>
Bài 14 :

Tập nghiệm của phương trình $\sqrt {3{{\rm{x}}^2} + 6{\rm{x}} + 16}  + \sqrt {{{\rm{x}}^2} + 2{\rm{x}}}  = 2\sqrt {{{\rm{x}}^2} + 2{\rm{x}} + 4} $ là:

Xem lời giải >>
Bài 15 :

Tổng các nghiệm của phương trình $4{x^2} - 12x - 5\sqrt {{4x^2} - 12x + 11}  + 15 = 0$ bằng:

Xem lời giải >>
Bài 16 :

Số nghiệm của phương trình $\sqrt {2{\rm{x}} - 1}  + {x^2} - 3{\rm{x + 1 = 0}}$ là:

Xem lời giải >>
Bài 17 :

Cho phương trình $2{{\rm{x}}^2} + 3{\rm{x}} - 14 = 2\sqrt[3]{{2{{\rm{x}}^2} + 3{\rm{x}} - 10}}$ . Giả sử ${x_1},{x_2}$  là 2 nghiệm của phương trình. Tính giá trị biểu thức $A = \sqrt {{x_1}^2 + {x_2}^2 - 4{{\rm{x}}_1}.{x_2}} $

Xem lời giải >>
Bài 18 :

Tổng bình phương các nghiệm của phương trình $\sqrt {4{{\rm{x}}^2} + x + 6}  = 4{\rm{x}} - 2 + 7\sqrt {x + 1} $ là:    

Xem lời giải >>
Bài 19 :

Số nghiệm của phương trình $3\sqrt {x + 2}  - 6\sqrt {2 - x}  + 4\sqrt {4 - {x^2}}  = 10 - 3{\rm{x}}$

Xem lời giải >>
Bài 20 :

Gọi \(S\) là tập nghiệm của phương trình \(\sqrt {5{x^2} + 4x}  - \sqrt {{x^2} - 3x - 18}  = 5\sqrt x \). Số phần tử của \(S\) là:

Xem lời giải >>