Đề bài

Tập nghiệm của phương trình $\sqrt {3{{\rm{x}}^2} + 6{\rm{x}} + 16}  + \sqrt {{{\rm{x}}^2} + 2{\rm{x}}}  = 2\sqrt {{{\rm{x}}^2} + 2{\rm{x}} + 4} $ là:

  • A.

    $\left\{ {0; - 2} \right\}$

  • B.

    $\left\{ 0 \right\}$ 

  • C.

    $\left\{ { - 2} \right\}$

  • D.

    \(\emptyset \)

Phương pháp giải

Đặt $t = \sqrt {{x^2} + 2x} \,\,\,\left( {t \ge 0} \right) \Rightarrow $ Phương trình ẩn $t$

Lời giải của GV Loigiaihay.com

Điều kiện: $\left\{ \begin{array}{l}3{{\rm{x}}^2} + 6{\rm{x}} + 16 \ge 0\\{x^2} + 2{\rm{x}} \ge 0\\{x^2} + 2{\rm{x}} + 4 \ge 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \le  - 2\\x \ge 0\end{array} \right.$

Đặt $t = \sqrt {{x^2} + 2x} \,\,\,\left( {t \ge 0} \right) \Leftrightarrow {t^2} = {x^2} + 2x \Leftrightarrow {t^2} = {x^2} + 2x$

Phương trình trở thành: $\sqrt {3{t^2} + 16}  + t = 2\sqrt {{t^2} + 4} $

                                       $\begin{array}{l} \Leftrightarrow 3{t^2} + 16 + {t^2} + 2t\sqrt {3{t^2} + 16}  = 4{t^2} + 16\\ \Leftrightarrow 2t\sqrt {3{t^2} + 16}  = 0 \Leftrightarrow t = 0\end{array}$            

+) Với $t = 0 \Leftrightarrow {x^2} + 2x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - 2\end{array} \right.$

Vậy tập nghiệm của phương trình là : $S = \left\{ {0; - 2} \right\}$

Đáp án : A

BÌNH LUẬN

Danh sách bình luận

Đang tải bình luận...