Tập nghiệm của phương trình $\sqrt {x - 2} - \dfrac{{x + 5}}{{\sqrt {7 - x} }} = 0$ là:
-
A.
$\left\{ 2 \right\}$
-
B.
\(\emptyset \)
-
C.
$\left\{ 7 \right\}$
-
D.
$\left\{ {2;7} \right\}$
Chuyển vế, bình phương hai vế chú ý điều kiện khi bình phương là hai vế phải không âm.
Điều kiện: $\left\{ \begin{array}{l}x - 2 \ge 0\\7 - x > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 2\\x < 7\end{array} \right. \Leftrightarrow 2 \le x < 7$
Khi đó $x+5>0$ nên phương trình $ \Leftrightarrow \sqrt {(x - 2)(7 - x)} = x + 5$ $ \Leftrightarrow - {x^2} + 9{x} - 14 = {x^2} + 10{x} + 25$
$ \Leftrightarrow 2{x}^2 + x + 39 = 0$ , có $\Delta = -311 < 0$ nên phương trình vô nghiệm.
Đáp án : B
Các bài tập cùng chuyên đề
Phương trình: $\sqrt {x - 1} = x - 3$ có tập nghiệm là:
Số nghiệm của phương trình $\sqrt {{x^2} + 2x + 4} = \sqrt {2 - x} $ là:
Tập nghiệm của phương trình: $\sqrt {3 - x} = \sqrt {x + 2} + 1$
Số nghiệm của phương trình $\sqrt[3]{{x + 1}} + \sqrt[3]{{x + 2}} + \sqrt[3]{{x + 3}} = 0$ là:
Tích các nghiệm của phương trình $\sqrt {x + 2} + \sqrt {5 - 2{\rm{x}}} = \sqrt {2{\rm{x}}} + \sqrt {7 - 3{\rm{x}}} $ bằng:
Tập nghiệm của phương trình $\sqrt {x + 5 - 4\sqrt {x + 1} } + \sqrt {x + 2 - 2\sqrt {x + 1} } = 1$ là:
Số nghiệm của phương trình$\sqrt {{{\rm{x}}^4} - 2{{\rm{x}}^2} + 1} = 1 - x$ là:
Tập nghiệm của phương trình $\sqrt {x + 3} - \sqrt {6 - x} = 3 + \sqrt {\left( {x + 3} \right)\left( {6 - x} \right)} $là:
Số nghiệm của phương trình ${x^2} - 6{\rm{x}} + 9 = 4\sqrt {{x^2} - 6{\rm{x}} + 6} $ là:
Số nghiệm của phương trình $\sqrt[3]{{x + 24}} + \sqrt {12 - x} = 6$là:
Tổng bình phương các nghiệm của phương trình $\dfrac{2}{{\sqrt {x + 1} + \sqrt {3 - x} }} = 1 + \sqrt {3 + 2{\rm{x}} - {x^2}} $ là:
Tổng hai nghiệm của phương trình $5\sqrt x + \dfrac{5}{{2\sqrt x }} = 2{\rm{x}} + \dfrac{1}{{2{\rm{x}}}} + 4$ là:
Tập nghiệm của phương trình $\sqrt {3{{\rm{x}}^2} + 6{\rm{x}} + 16} + \sqrt {{{\rm{x}}^2} + 2{\rm{x}}} = 2\sqrt {{{\rm{x}}^2} + 2{\rm{x}} + 4} $ là:
Tổng các nghiệm của phương trình $4{x^2} - 12x - 5\sqrt {{4x^2} - 12x + 11} + 15 = 0$ bằng:
Tập nghiệm của phương trình ${x^2} + 3{\rm{x}} + 1 = \left( {x + 3} \right)\sqrt {{x^2} + 1} $ là:
Số nghiệm của phương trình $\sqrt {2{\rm{x}} - 1} + {x^2} - 3{\rm{x + 1 = 0}}$ là:
Cho phương trình $2{{\rm{x}}^2} + 3{\rm{x}} - 14 = 2\sqrt[3]{{2{{\rm{x}}^2} + 3{\rm{x}} - 10}}$ . Giả sử ${x_1},{x_2}$ là 2 nghiệm của phương trình. Tính giá trị biểu thức $A = \sqrt {{x_1}^2 + {x_2}^2 - 4{{\rm{x}}_1}.{x_2}} $
Tổng bình phương các nghiệm của phương trình $\sqrt {4{{\rm{x}}^2} + x + 6} = 4{\rm{x}} - 2 + 7\sqrt {x + 1} $ là:
Số nghiệm của phương trình $3\sqrt {x + 2} - 6\sqrt {2 - x} + 4\sqrt {4 - {x^2}} = 10 - 3{\rm{x}}$
Gọi \(S\) là tập nghiệm của phương trình \(\sqrt {5{x^2} + 4x} - \sqrt {{x^2} - 3x - 18} = 5\sqrt x \). Số phần tử của \(S\) là: