Trong không gian Oxyz, cho vecto \(\overrightarrow a = (1;2;3)\), \(\overrightarrow b = (3;6;9)\).
a) \(\overrightarrow b - \overrightarrow a = (2;4;6)\)
b) \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương
c) \(\left| {\overrightarrow a } \right| = \sqrt 6 \)
d) \( - \overrightarrow b = 3\overrightarrow i + 6\overrightarrow j + 9\overrightarrow k \)
a) \(\overrightarrow b - \overrightarrow a = (2;4;6)\)
b) \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương
c) \(\left| {\overrightarrow a } \right| = \sqrt 6 \)
d) \( - \overrightarrow b = 3\overrightarrow i + 6\overrightarrow j + 9\overrightarrow k \)
Sử dụng các quy tắc cộng, trừ vecto, nhân vecto với một số, khái niệm hai vecto cùng phương, công thức tính độ dài vecto.
a) Đúng. Vì \(\overrightarrow b - \overrightarrow a = (3 - 1;6 - 2;9 - 3) = (2;4;6)\).
b) Đúng. Vì \(\frac{1}{3} = \frac{2}{6} = \frac{3}{9}\) nên \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương.
c) Sai. Vì \(\left| {\overrightarrow a } \right| = \sqrt {{1^2} + {2^2} + {3^2}} = \sqrt {14} \).
d) Sai. Vì \( - \overrightarrow b = ( - 3; - 6; - 9) = - 3\overrightarrow i - 6\overrightarrow j - 9\overrightarrow k \).
Các bài tập cùng chuyên đề
Trong không gian Oxyz, cho \(A\left( {0;2;1} \right),B\left( {3; - 2;1} \right)\) và \(C\left( { - 2;5;7} \right)\).
a) Tính chu vi của tam giác ABC.
b) Tính \(\widehat {BAC}\).
Cho các điểm A(–1; –1; 0), B(0; 3; –1), C(–1; 14; 0), D(–3; 6; 2). Chứng minh rằng ABCD là hình thang.
Cho hình hộp ABCD.A′B′C′D′ có A(1; 0; 1), B(2; 1; 2), D(1; –1; 1), C′(4; 5; –5). Tìm toạ độ các đỉnh còn lại của hình hộp.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O.
Cho điểm \(A\left( {3; - 1;1} \right)\). Hình chiếu vuông góc của điểm \(A\) trên mặt phẳng \(\left( {Oyz} \right)\) là điểm
A. \(M\left( {3;0;0} \right)\).
B. \(N\left( {0; - 1;1} \right)\).
C. \(P\left( {0; - 1;0} \right)\).
D. \(Q\left( {0;0;1} \right)\).
Cho điểm \(M\left( { - 3;2; - 1} \right)\) và điểm \(M'\) là điểm đối xứng của \(M\) qua mặt phẳng \(\left( {Oxy} \right)\). Toạ độ của điểm \(M'\) là
A. \(\left( { - 3;2;1} \right)\).
B. \(\left( {3;2;1} \right)\).
C. \(\left( {3;2; - 1} \right)\).
D. \(\left( {3; - 2; - 1} \right)\).
Hình chiếu vuông góc của điểm \(M\left( {2;1; - 1} \right)\) trên trục \(Oz\) có toạ độ là
A. \(\left( {2;1;0} \right)\).
B. \(\left( {0;0; - 1} \right)\).
C. \(\left( {2;0;0} \right)\).
D. \(\left( {0;1;0} \right)\).
Cho điểm \(A\left( { - 3;1;2} \right)\) và điểm \(A'\) là điểm đối xứng của \(A\) qua trục \(Oy\). Toạ độ của điểm \(A'\) là
A. \(\left( {3; - 1; - 2} \right)\).
B. \(\left( {3; - 1;2} \right)\).
C. \(\left( {3;1; - 2} \right)\).
D. \(\left( { - 3; - 1;2} \right)\).