Đề bài
Con hãy tích vào ô đúng hoặc sai cho mỗi câu (khẳng định) dưới đây.

Trong không gian Oxyz, cho vecto \(\overrightarrow a  = (1;2;3)\), \(\overrightarrow b  = (3;6;9)\).

a) \(\overrightarrow b  - \overrightarrow a  = (2;4;6)\)

Đúng
Sai

b) \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương

Đúng
Sai

c) \(\left| {\overrightarrow a } \right| = \sqrt 6 \)

Đúng
Sai

d) \( - \overrightarrow b  = 3\overrightarrow i  + 6\overrightarrow j  + 9\overrightarrow k \)

Đúng
Sai
Đáp án

a) \(\overrightarrow b  - \overrightarrow a  = (2;4;6)\)

Đúng
Sai

b) \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương

Đúng
Sai

c) \(\left| {\overrightarrow a } \right| = \sqrt 6 \)

Đúng
Sai

d) \( - \overrightarrow b  = 3\overrightarrow i  + 6\overrightarrow j  + 9\overrightarrow k \)

Đúng
Sai
Phương pháp giải

Sử dụng các quy tắc cộng, trừ vecto, nhân vecto với một số, khái niệm hai vecto cùng phương, công thức tính độ dài vecto.

Lời giải của GV Loigiaihay.com

a) Đúng. Vì \(\overrightarrow b  - \overrightarrow a  = (3 - 1;6 - 2;9 - 3) = (2;4;6)\).

b) Đúng.  Vì \(\frac{1}{3} = \frac{2}{6} = \frac{3}{9}\) nên \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương.

c) Sai. Vì \(\left| {\overrightarrow a } \right| = \sqrt {{1^2} + {2^2} + {3^2}}  = \sqrt {14} \).

d) Sai. Vì \( - \overrightarrow b  = ( - 3; - 6; - 9) =  - 3\overrightarrow i  - 6\overrightarrow j  - 9\overrightarrow k \).

Các bài tập cùng chuyên đề

Bài 1 :

Trong không gian Oxyz, cho \(A\left( {0;2;1} \right),B\left( {3; - 2;1} \right)\) và \(C\left( { - 2;5;7} \right)\).

a) Tính chu vi của tam giác ABC.

b) Tính \(\widehat {BAC}\).

 
Xem lời giải >>
Bài 2 :

 

 

Cho các điểm A(–1; –1; 0), B(0; 3; –1), C(–1; 14; 0), D(–3; 6; 2). Chứng minh rằng ABCD là hình thang.

Xem lời giải >>
Bài 3 :

Cho hình hộp ABCD.A′B′C′D′ có A(1; 0; 1), B(2; 1; 2), D(1; –1; 1), C′(4; 5; –5). Tìm toạ độ các đỉnh còn lại của hình hộp.

 
Xem lời giải >>
Bài 4 :

Cho điểm \(A\left( {3; - 1;1} \right)\). Hình chiếu vuông góc của điểm \(A\) trên mặt phẳng \(\left( {Oyz} \right)\) là điểm

A. \(M\left( {3;0;0} \right)\).

B. \(N\left( {0; - 1;1} \right)\).

C. \(P\left( {0; - 1;0} \right)\).

D. \(Q\left( {0;0;1} \right)\).

Xem lời giải >>
Bài 5 :

Cho điểm \(M\left( { - 3;2; - 1} \right)\) và điểm \(M'\) là điểm đối xứng của \(M\) qua mặt phẳng \(\left( {Oxy} \right)\). Toạ độ của điểm \(M'\) là

A. \(\left( { - 3;2;1} \right)\).

B. \(\left( {3;2;1} \right)\).

C. \(\left( {3;2; - 1} \right)\).

D. \(\left( {3; - 2; - 1} \right)\).

Xem lời giải >>
Bài 6 :

Hình chiếu vuông góc của điểm \(M\left( {2;1; - 1} \right)\) trên trục \(Oz\) có toạ độ là

A. \(\left( {2;1;0} \right)\).

B. \(\left( {0;0; - 1} \right)\).

C. \(\left( {2;0;0} \right)\).

D. \(\left( {0;1;0} \right)\).

Xem lời giải >>
Bài 7 :

Cho điểm \(A\left( { - 3;1;2} \right)\) và điểm \(A'\) là điểm đối xứng của \(A\) qua trục \(Oy\). Toạ độ của điểm \(A'\) là

A. \(\left( {3; - 1; - 2} \right)\).

B. \(\left( {3; - 1;2} \right)\).

C. \(\left( {3;1; - 2} \right)\).

D. \(\left( { - 3; - 1;2} \right)\).

Xem lời giải >>