Đề bài

Kết quả của tích phân \(\int\limits_{ - 1}^0 {\left( {x + 1 + \dfrac{2}{{x - 1}}} \right)dx} \) được viết dưới dạng \(a + b\ln 2\) với \(a,b \in Q\). Khi đó \(a + b\) có giá trị là:

  • A.

    \(\dfrac{3}{2}\)

  • B.

    \( - \dfrac{3}{2}\)                   

  • C.

    \(\dfrac{5}{2}\)         

  • D.

    \( - \dfrac{5}{2}\)

Phương pháp giải

Sử dụng bảng nguyên hàm các hàm sơ cấp để tính tích phân, từ đó tìm \(a,b \Rightarrow a + b\).

Lời giải của GV Loigiaihay.com

Ta có: \(\int\limits_{ - 1}^0 {\left( {x + 1 + \dfrac{2}{{x - 1}}} \right)dx}  = \left. {\left( {\dfrac{{{x^2}}}{2} + x + 2\ln \left| {x - 1} \right|} \right)} \right|_{ - 1}^0 \)

$= \dfrac{1}{2} - 2\ln 2 \Rightarrow \left\{ \begin{array}{l}a = \dfrac{1}{2}\\b =  - 2\end{array} \right. \Rightarrow a + b =  - \dfrac{3}{2}$

Đáp án : B

Các bài tập cùng chuyên đề

Bài 1 :

Cho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Chọn mệnh đề sai?

Xem lời giải >>
Bài 2 :

Giả sử hàm số \(y = f\left( x \right)\) liên tục trên \(\left[ {a;b} \right]\) và \(k\) là một số thực trên \(R\). Cho các công thức:

a) \(\int\limits_a^a {f\left( x \right)dx} = 0\)

b) \(\int\limits_a^b {f\left( x \right)dx}  = \int\limits_b^a {f\left( x \right)dx} \) 

c) \(\int\limits_a^b {kf\left( x \right)dx}  = k\int\limits_a^b {f\left( x \right)dx} \)

Số công thức sai là:

Xem lời giải >>
Bài 3 :

Cho hàm số $f(x)$ có đạo hàm trên $\left[ {1;4} \right]$ và $f(1) = 2,{\mkern 1mu} {\mkern 1mu} f(4) = 10$. Giá trị của $I = \int\limits_1^4 {f'(x)dx} $ là

Xem lời giải >>
Bài 4 :

Cho hàm số $y = f\left( x \right)$ liên tục trên đoạn $\left[ {0;1} \right],$ có $\int\limits_0^1 {\left[ {3 - 2f\left( x \right)} \right]{\rm{d}}x}  = 5.$ Tính $\int\limits_0^1 {f\left( x \right){\rm{d}}x} .$

Xem lời giải >>
Bài 5 :

Đặt \(F\left( x \right) = \int\limits_1^x {tdt} \). Khi đó \(F'\left( x \right)\) là hàm số nào dưới đây?

Xem lời giải >>
Bài 6 :

Cho hàm số \(F\left( x \right) = \int\limits_1^x {\left( {t + 1} \right)dt} \). Giá trị nhỏ nhất của \(F\left( x \right)\) trên đoạn \(\left[ { - 1;1} \right]\)  là:

Xem lời giải >>
Bài 7 :

Cho hai hàm số \(f\left( x \right) = {x^2}\) và \(g\left( x \right) = {x^3}\). Chọn mệnh đề đúng:

Xem lời giải >>
Bài 8 :

Giả sử  $f\left( x \right)$ là hàm liên tục trên $R$ và các số thực $a < b < c$ . Mệnh đề nào sau đây là sai?

Xem lời giải >>
Bài 9 :

Nếu \(f\left( 1 \right) = 12,f'\left( x \right)\) liên tục và \(\int\limits_1^4 {f'\left( x \right)dx}  = 17\) thì giá trị của \(f\left( 4 \right)\) bằng:

Xem lời giải >>
Bài 10 :

Cho \(\int\limits_2^5 {f\left( x \right)dx}  = 10\), khi dó \(\int\limits_5^2 {\left[ {2 - 4f\left( x \right)} \right]dx} \) có giá trị là:

Xem lời giải >>
Bài 11 :

Cho hàm số \(f\left( x \right)\) liên tục trên \(R\) thỏa mãn \(\int\limits_a^d {f\left( x \right)dx}  = 10;\int\limits_b^d {f\left( x \right)dx}  = 18;\int\limits_a^c {f\left( x \right)dx}  = 7\). Giá trị của \(\int\limits_b^c {f\left( x \right)dx} \) là:

Xem lời giải >>
Bài 12 :

Cho biết \(\int\limits_1^3 {f\left( x \right)dx}  =  - 2,\int\limits_1^4 {f\left( x \right)dx}  = 3,\int\limits_1^4 {g\left( x \right)dx}  = 7\). Chọn khẳng định sai?

Xem lời giải >>
Bài 13 :

Giả sử \(A,B\) là các hằng số của hàm số \(f\left( x \right) = A\sin \pi x + B{x^2}\). Biết \(\int\limits_0^2 {f\left( x \right)dx}  = 4\), giá trị của \(B\) là:

Xem lời giải >>
Bài 14 :

Giá trị của \(b\) để \(\int\limits_1^b {\left( {2x - 6} \right)dx}  = 0\) là:

Xem lời giải >>
Bài 15 :

Nếu \(\int\limits_0^a {\left( {\cos x + \sin x} \right)dx}  = 0\left( {0 < a < 2\pi } \right)\) thì giá trị của \(a\) là:

Xem lời giải >>
Bài 16 :

Nếu \(\int\limits_1^2 {\dfrac{{dx}}{{x + 3}}} \) được viết dưới dạng \(\ln \dfrac{a}{b}\) với \(a,b\) là các số tự nhiên và ước chung lớn nhất của \(a,b\) là \(1\). Chọn khẳng định sai:

Xem lời giải >>
Bài 17 :

Tính tích phân $I = \int\limits_1^2 {\left| {{x^2} - 3x + 2} \right|dx} $

Xem lời giải >>
Bài 18 :

Tập hợp nghiệm của phương trình $\int\limits_0^x {\sin 2tdt = 0} $ (ẩn $x$) là:

Xem lời giải >>
Bài 19 :

Tìm tất cả các giá trị thực của tham số $a$ để bất phương trình sau nghiệm đúng với mọi giá trị thực của $x$: $\int\limits_0^x {\left( {\dfrac{1}{2}t + 2\left( {a + 1} \right)} \right)dt \ge  - 1} $

Xem lời giải >>
Bài 20 :

Cho \(I = \int_0^1 {(mx - {e^x})dx} \). Tìm các giá trị của $m$ để \(I \ge 1 + e\)

Xem lời giải >>