Đề bài

Trong mặt phẳng $Oxy$ cho đường thẳng $(d): 3x - 4y + 5 = 0$ và đường tròn $(C):$ \({x^2} + {y^2} + 2x - 6y + 9 = 0.\) Tìm những điểm $M$ thuộc $(C)$ và $N$ thuộc $(d)$ sao cho $MN $ có độ dài nhỏ nhất.

  • A.

    \(M\left( { - \dfrac{{11}}{5};\dfrac{{23}}{5}} \right),N\left( {\dfrac{1}{5};\dfrac{7}{5}} \right)\)

  • B.

    \(M\left( { - \dfrac{2}{5};\dfrac{{11}}{5}} \right),N\left( {\dfrac{1}{5};\dfrac{7}{5}} \right)\)

  • C.

    \(M\left( { - \dfrac{2}{5};\dfrac{{11}}{5}} \right),N\left( {1;2} \right)\)

  • D.

    \(M\left( { - \dfrac{{11}}{5};\dfrac{{23}}{5}} \right),N\left( {1;2} \right)\)

Phương pháp giải

Sử dụng bất đẳng thức tam giác \(IM + MN \ge IN \Leftrightarrow MN \ge IN - R \Rightarrow MN\,\,\min  \Leftrightarrow NI\,\,\min \)

Lời giải của GV Loigiaihay.com

Đường tròn $(C )$ có tâm \(I( - 1;3)\) và bán kính \(R = \sqrt {{{\left( { - 1} \right)}^2} + {3^2} - 9}  = 1\).

Ta có: \(d(I;d) = \dfrac{{\left| {3.\left( { - 1} \right) - 4.3 + 5} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 2 > R\)

Suy ra \(d\) không cắt $(C ).$

Ta có \(IM + MN \ge IN \Leftrightarrow MN \ge IN - R\)\(\) 

$MN $ min  \( \Leftrightarrow \)  $IN$ đạt min \( \Leftrightarrow \) $N$ là chân hình chiếu vuông góc của $I$ xuống đường thẳng $d.$

Giả sử \(N(a;b)\). Vì \(N \in d\) nên ta có $3a{\rm{  -  }}4b{\rm{ }} + {\rm{ }}5{\rm{ }} = {\rm{ }}0$ (1)

Mặt khác, ta có: $IN$ vuông góc với $d$ nên \(\overrightarrow {IN} .\overrightarrow {{u_d}}  = 0\). Mà \(\overrightarrow {IN}  = \left( {a + 1;b - 3} \right),\overrightarrow {{u_d}}  = \left( {4;3} \right)\). Suy ra ta có: \(4(a + 1) + 3(b - 3) = 0 \Leftrightarrow 4a + 3b - 5 = 0\)   (2)

Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}4a + 3b - 5 = 0\\3a - 4b + 5 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \dfrac{1}{5}\\b = \dfrac{7}{5}\end{array} \right. \Rightarrow N\left( {\dfrac{1}{5};\dfrac{7}{5}} \right)\)

Vì \(d(I;d) = 2R\) nên \(M\) là trung điểm của \(IN\). Do đó, tọa độ của \(M\) là:

\(\left\{ \begin{array}{l}{x_M} = \dfrac{1}{2}\left( { - 1 + \dfrac{1}{5}} \right) =  - \dfrac{2}{5}\\{y_M} = \dfrac{1}{2}\left( {3 + \dfrac{7}{5}} \right) = \dfrac{{11}}{5}\end{array} \right. \Rightarrow M\left( { - \dfrac{2}{5};\dfrac{{11}}{5}} \right)\)

Đáp án : B

Các bài tập cùng chuyên đề

Bài 1 :

Đường tròn tâm $I\left( {a;b} \right)$ và bán kính $R$ có dạng:

Xem lời giải >>
Bài 2 :

Đường tròn tâm $I\left( {a;b} \right)$ và bán kính $R$ có phương trình ${\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}$ được viết lại thành ${x^2} + {y^2} - 2ax - 2by + c = 0$. Khi đó biểu thức nào sau đây đúng?

Xem lời giải >>
Bài 3 :

Cho đường tròn có phương trình $\left( C \right):{x^2} + {y^2} + 2ax + 2by + c = 0$. Khẳng định nào sau đây là sai?

Xem lời giải >>
Bài 4 :

Phương trình nào là phương trình của đường tròn có tâm \(I\left( { - 3;4} \right)\) và bán kính \(R = 2\)?

Xem lời giải >>
Bài 5 :

Với điều kiện nào thì  \({x^2} + {y^2} + 2ax + 2by + c = 0\)  biểu diễn phương trình đường tròn?

Xem lời giải >>
Bài 6 :

Với điều kiện nào của \(m\)  thì phương trình sau đây là phương trình đường tròn \({x^2} + {y^2} - 2(m + 2)x + 4my + 19m - 6 = 0\) ?

Xem lời giải >>
Bài 7 :

Phương trình nào sau đây là phương trình đường tròn?

Xem lời giải >>
Bài 8 :

Phương trình \({x^2} + {y^2} - 2x + 4y + 1 = 0\)  là phương trình của đường tròn nào?

Xem lời giải >>
Bài 9 :

Cho đường tròn\((C):{x^2} + {y^2} + 2x + 4y - 20 = 0\). Tìm mệnh đề sai trong các mệnh đề sau:

Xem lời giải >>
Bài 10 :

Trong số các đường tròn có phương trình dưới đây, đường tròn nào đi qua gốc tọa độ \(O(0,0)\)?

Xem lời giải >>
Bài 11 :

Phương trình đường tròn $(C)$ có tâm \(I(2; - 4)\)  và đi qua điểm \(A(1;3)\)  là:

Xem lời giải >>
Bài 12 :

Đường tròn có tâm trùng với gốc tọa độ, bán kính \(R = 1\) có phương trình là:

Xem lời giải >>
Bài 13 :

Cho hai điểm \(A(6;2)\)  và \(B( - 2;0).\) Phương trình đường tròn $(C)$ có đường kính $AB$ là:

Xem lời giải >>
Bài 14 :

Phương trình đường tròn $(C)$ đi qua hai điểm \(A(0;1),B(1;0)\) và có tâm nằm trên đường thẳng: \(x + y + 2 = 0\) là:

Xem lời giải >>
Bài 15 :

Phương trình đường tròn $(C)$ đi qua $3$ điểm \(A(0;2),B( - 2;0)\) và \(C(2;0)\) là:

Xem lời giải >>
Bài 16 :

Trong mặt phẳng với hệ trục tọa độ $Oxy,$ cho hai đường thẳng \({d_1}:x + y + 5 = 0,{d_2}:x + 2y - 7 = 0\)  và tam giác $ABC$ có \(A(2;3)\), trọng tâm là $G(2;0),$ điểm $B$ thuộc \({d_1}\)  và điểm $C$ thuộc \({d_2}\). Viết phương trình đường tròn ngoại tiếp tam giác $ABC.$

Xem lời giải >>
Bài 17 :

Tìm tọa độ tâm I của đường tròn đi qua ba điểm A(0;4), B(2;4), C(4;0).

Xem lời giải >>
Bài 18 :

Trong mặt phẳng với hệ trục tọa độ Oxy, cho phương trình đường tròn \(\left( {{C_m}} \right):{x^2} + {y^2} - 2mx + \left( {4m + 2} \right)y - 6m - 5 = 0\) (m là tham số). Tập hợp các điểm \({I_m}\) là tâm của đường tròn \(\left( {{C_m}} \right)\) khi m thay đổi là:

Xem lời giải >>
Bài 19 :

Trong mặt phẳng với hệ tọa độ \(Oxy\), cho đường tròn \(({C_m}):{x^2} + {y^2} - 2mx - 4my - 5 = 0\) (\(m\) là tham số). Biết đường tròn \(({C_m})\) có bán kính bằng 5. Khi đó tập hợp tất cả các giá trị của \(m\) là

Xem lời giải >>