Đề bài

Phương trình đường tròn $(C)$ đi qua hai điểm \(A(0;1),B(1;0)\) và có tâm nằm trên đường thẳng: \(x + y + 2 = 0\) là:

  • A.

    \({(x - 1)^2} + {(y - 1)^2} = \sqrt 5 \)

  • B.

    \({(x + 1)^2} + {(y + 1)^2} = \sqrt 5 \)

  • C.

    \({(x - 1)^2} + {(y - 1)^2} = 5\)

  • D.

    \({(x + 1)^2} + {(y + 1)^2} = 5\)

Phương pháp giải

Tìm điểm \(I({x_I};{y_I})\) nằm trên đường thẳng \(x + y + 2 = 0\) và thỏa mãn điều kiện \(IA = IB.\) Phương trình đường tròn $(C)$ có tâm \(I({x_I};{y_I})\) và bán kính \(R = IA = IB\).

Lời giải của GV Loigiaihay.com

Giả sử điểm \(I({x_I};{y_I})\) là tâm của đường tròn $(C).$ Vì $I$ nằm trên đường thẳng \(x + y + 2 = 0\) nên ta có \({x_I} + {y_I} + 2 = 0\)   (1)

Vì đường tròn $(C)$ đi qua hai điểm \(A\left( {0;1} \right),\,\,B\left( {1;0} \right)\) nên ta có \(IA = IB\). Điều này tương đương với

\(I{A^2} = I{B^2}\)  hay

\(\begin{array}{l}{\left( {{x_I}} \right)^2} + {\left( {1 - {y_I}} \right)^2} = {\left( {1 - {x_I}} \right)^2} + {\left( {{y_I}} \right)^2}\\ \Leftrightarrow x_I^2 + y_I^2 - 2{y_I} + 1 = x_I^2 - 2{x_I} + 1 + y_I^2\\ \Leftrightarrow {x_I} = {y_I}\,\,\,\,\left( 2 \right)\end{array}\)

Từ $(1)$ và $(2)$ suy ra \({x_I} = {y_I} =  - 1\). Suy ra \(I\left( { - 1; - 1} \right)\).

Mặt khác ta có \(R = IA = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 1 - 1} \right)}^2}}  = \sqrt 5 \) 

Vậy $(C)$ có dạng \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} = 5\)

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Đường tròn tâm $I\left( {a;b} \right)$ và bán kính $R$ có dạng:

Xem lời giải >>
Bài 2 :

Đường tròn tâm $I\left( {a;b} \right)$ và bán kính $R$ có phương trình ${\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}$ được viết lại thành ${x^2} + {y^2} - 2ax - 2by + c = 0$. Khi đó biểu thức nào sau đây đúng?

Xem lời giải >>
Bài 3 :

Cho đường tròn có phương trình $\left( C \right):{x^2} + {y^2} + 2ax + 2by + c = 0$. Khẳng định nào sau đây là sai?

Xem lời giải >>
Bài 4 :

Phương trình nào là phương trình của đường tròn có tâm \(I\left( { - 3;4} \right)\) và bán kính \(R = 2\)?

Xem lời giải >>
Bài 5 :

Với điều kiện nào thì  \({x^2} + {y^2} + 2ax + 2by + c = 0\)  biểu diễn phương trình đường tròn?

Xem lời giải >>
Bài 6 :

Với điều kiện nào của \(m\)  thì phương trình sau đây là phương trình đường tròn \({x^2} + {y^2} - 2(m + 2)x + 4my + 19m - 6 = 0\) ?

Xem lời giải >>
Bài 7 :

Phương trình nào sau đây là phương trình đường tròn?

Xem lời giải >>
Bài 8 :

Phương trình \({x^2} + {y^2} - 2x + 4y + 1 = 0\)  là phương trình của đường tròn nào?

Xem lời giải >>
Bài 9 :

Cho đường tròn\((C):{x^2} + {y^2} + 2x + 4y - 20 = 0\). Tìm mệnh đề sai trong các mệnh đề sau:

Xem lời giải >>
Bài 10 :

Trong số các đường tròn có phương trình dưới đây, đường tròn nào đi qua gốc tọa độ \(O(0,0)\)?

Xem lời giải >>
Bài 11 :

Phương trình đường tròn $(C)$ có tâm \(I(2; - 4)\)  và đi qua điểm \(A(1;3)\)  là:

Xem lời giải >>
Bài 12 :

Đường tròn có tâm trùng với gốc tọa độ, bán kính \(R = 1\) có phương trình là:

Xem lời giải >>
Bài 13 :

Cho hai điểm \(A(6;2)\)  và \(B( - 2;0).\) Phương trình đường tròn $(C)$ có đường kính $AB$ là:

Xem lời giải >>
Bài 14 :

Phương trình đường tròn $(C)$ đi qua $3$ điểm \(A(0;2),B( - 2;0)\) và \(C(2;0)\) là:

Xem lời giải >>
Bài 15 :

Trong mặt phẳng với hệ trục tọa độ $Oxy,$ cho hai đường thẳng \({d_1}:x + y + 5 = 0,{d_2}:x + 2y - 7 = 0\)  và tam giác $ABC$ có \(A(2;3)\), trọng tâm là $G(2;0),$ điểm $B$ thuộc \({d_1}\)  và điểm $C$ thuộc \({d_2}\). Viết phương trình đường tròn ngoại tiếp tam giác $ABC.$

Xem lời giải >>
Bài 16 :

Trong mặt phẳng $Oxy$ cho đường thẳng $(d): 3x - 4y + 5 = 0$ và đường tròn $(C):$ \({x^2} + {y^2} + 2x - 6y + 9 = 0.\) Tìm những điểm $M$ thuộc $(C)$ và $N$ thuộc $(d)$ sao cho $MN $ có độ dài nhỏ nhất.

Xem lời giải >>
Bài 17 :

Tìm tọa độ tâm I của đường tròn đi qua ba điểm A(0;4), B(2;4), C(4;0).

Xem lời giải >>
Bài 18 :

Trong mặt phẳng với hệ trục tọa độ Oxy, cho phương trình đường tròn \(\left( {{C_m}} \right):{x^2} + {y^2} - 2mx + \left( {4m + 2} \right)y - 6m - 5 = 0\) (m là tham số). Tập hợp các điểm \({I_m}\) là tâm của đường tròn \(\left( {{C_m}} \right)\) khi m thay đổi là:

Xem lời giải >>
Bài 19 :

Trong mặt phẳng với hệ tọa độ \(Oxy\), cho đường tròn \(({C_m}):{x^2} + {y^2} - 2mx - 4my - 5 = 0\) (\(m\) là tham số). Biết đường tròn \(({C_m})\) có bán kính bằng 5. Khi đó tập hợp tất cả các giá trị của \(m\) là

Xem lời giải >>