Tìm giá trị nhỏ nhất \(m\) và lớn nhất \(M\) của hàm số \(f\left( x \right) = \sqrt {x + 3} + \sqrt {6 - x} .\)
-
A.
\(m = \sqrt 2 ,{\rm{ }}M = 3.\)
-
B.
\(m = 3,{\rm{ }}M = 3\sqrt 2 .\)
-
C.
\(m = \sqrt 2 ,{\rm{ }}M = 3\sqrt 2 .\)
-
D.
\(m = \sqrt 3 ,{\rm{ }}M = 3.\)
- Bình phương \(f\left( x \right)\) và đánh giá GTNN của \({f^2}\left( x \right)\) dựa vào kết quả \(\sqrt {g\left( x \right)} \ge 0\).
- Đánh giá GTLN của \({f^2}\left( x \right)\) dựa vào bất đẳng thức Cô – si: \(x + y \ge 2\sqrt {xy} ,\forall x,y > 0\).
Hàm số xác định khi \(\left\{ \begin{array}{l}x + 3 \ge 0\\6 - x \ge 0\end{array} \right. \Leftrightarrow - 3 \le x \le 6\) nên TXĐ \({\rm{D}} = \left[ { - 3;6} \right].\)
Ta có \({f^2}\left( x \right) = 9 + 2\sqrt {\left( {x + 3} \right)\left( {6 - x} \right)} \).
\( \bullet \) Vì $\sqrt {\left( {3 + x} \right)\left( {6 - x} \right)} \ge 0,\,\,\forall x \in \left[ { - \,3;6} \right]$ nên suy ra \({f^2}\left( x \right) \geqslant 9 \Rightarrow f\left( x \right) \geqslant 3.\)
Dấu \('' = ''\) xảy ra \( \Leftrightarrow x = - 3\) hoặc \(x = 6.\) Vậy $m = 3.$
\( \bullet \) Lại có $2\sqrt {\left( {3 + x} \right)\left( {6 - x} \right)} \le 3 + x + 6 - x = 9$ nên suy ra \({f^2}\left( x \right) \leqslant 18 \Rightarrow f\left( x \right) \leqslant 3\sqrt 2 .\)
Dấu \('' = ''\) xảy ra \( \Leftrightarrow x + 3 = 6 - x \Leftrightarrow x = \dfrac{3}{2}.\) Vậy $M = 3\sqrt 2 .$
Vậy $m = 3,\,\,\,M = 3\sqrt 2 .$
Đáp án : B
Các bài tập cùng chuyên đề
Cho bất đẳng thức$\left| {a - b} \right| \le \left| a \right| + \left| b \right|$. Dấu đẳng thức xảy ra khi nào?
Giá trị nhỏ nhất của biểu thức \({x^2} + 3\left| x \right|\) với \(x \in \mathbb{R}\) là:
Cho hàm số \(f\left( x \right) = \sqrt {1 - {x^2}} \). Kết luận nào sau đây đúng?
Trong các hình chữ nhật có cùng chu vi thì
Tìm mệnh đề đúng?
Suy luận nào sau đây đúng?
Cho biểu thức \(P = - a + \sqrt a \) với \(a \ge 0\). Mệnh đề nào sau đây là mệnh đề đúng?
Giá trị lớn nhất của hàm số \(f\left( x \right) = \dfrac{2}{{{x^2} - 5x + 9}}\) bằng
Cho hai số \(x\), \(y\) dương thoả \(x + y = 12\), bất đẳng thức nào sau đây đúng?
Cho \(a > b > 0\) và \(x = \dfrac{{1 + a}}{{1 + a + {a^2}}}\), \(y = \dfrac{{1 + b}}{{1 + b + {b^2}}}\). Mệnh đề nào sau đây đúng?
Cho $a,b,c > 0$. Xét các bất đẳng thức sau:
(I) $\dfrac{a}{b} + \dfrac{b}{a} \ge 2$
(II) $\dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{a} \ge 3$
(III) $\left( {a + b} \right)\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right) \ge 4$
Bất đẳng thức nào đúng?
Cho \(a < b < c < d\) và \(x = \left( {a + b} \right)\left( {c + d} \right)\), \(y = \left( {a + c} \right)\left( {b + d} \right)\), \(z = \left( {a + d} \right)\left( {b + c} \right)\). Mệnh đề nào sau đây là đúng?
Giá trị nhỏ nhất của hàm số \(f\left( x \right) = \dfrac{x}{2} + \dfrac{2}{{x - 1}}\) với \(x\; > \;1\) là
Cho \(x \ge 2\). Giá trị lớn nhất của hàm số \(f\left( x \right) = \dfrac{{\sqrt {x - 2} }}{x}\) bằng
Với \(a,b,c > 0\). Biểu thức \(P = \dfrac{a}{{b + c}} + \dfrac{b}{{c + a}} + \dfrac{c}{{a + b}}\). Mệnh đề nào sau đây đúng?
Tìm giá trị nhỏ nhất $m$ và lớn nhất $M$ của hàm số \(f\left( x \right) = 2\sqrt {x - 4} + \sqrt {8 - x} .\)
Cho hai số thực \(x,{\rm{ }}y\) thỏa mãn ${x^2} + {y^2} - 3\left( {x + y} \right) + 4 = 0$. Tập giá trị của biểu thức \(S = x + y\) là:
Cho hai số thực dương \(x,{\rm{ }}y\) thỏa mãn \(x + y = 1\). Giá trị nhỏ nhất của \(S = \dfrac{1}{x} + \dfrac{4}{y}\) là:
Bất đẳng thức \({\left( {m + n} \right)^2} \ge 4mn\) tương đương với bất đẳng thức nào sau đây?
Cho \(a,\,\,b,\,\,c\) dương. Bất đẳng thức nào sau đây đúng?