Bài 8.21 trang 79 SGK Toán 11 tập 2 - Cùng khám phá


Cho hình chóp tam giác đều S.ABC có cạnh bên bằng 4a và cạnh đáy bằng 6a. Tính khoảng cách từ S đến mặt phẳng (ABC).

Đề bài

Cho hình chóp tam giác đều S.ABC có cạnh bên bằng 4a và cạnh đáy bằng 6a. Tính khoảng cách từ S đến mặt phẳng (ABC).

Phương pháp giải - Xem chi tiết

Tìm khoảng cách giữa M và (P):

+ Tìm (Q) chứa M và vuông góc với (P) theo giao tuyến d.

+ Từ M hạ MH vuông góc với d (H thuộc d).

+ Khi đó MH là khoảng cách cần tìm.

Lời giải chi tiết

Gọi O là trọng tâm tam giác ABC

Ta có: BC \(\bot\) AF, BC \(\bot\) SF

\(\Rightarrow\) BC \(\bot\) (SAF). Do đó, BC \(\bot\) SO (1)

Tương tự, AB \(\bot\) (SCK). Suy ra, AB \(\bot\) SO (2)

Từ (1) và(2), SO \(\bot\) (ABC)

Vậy d(S,(ABC)) =  SO

\(\begin{array}{l}AH = 3\sqrt 3 a\\AO = \frac{2}{3}AH = 2\sqrt 3 \\SO = \sqrt {S{A^2} - A{O^2}}  = 2a\end{array}\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí