Bài 8.21 trang 79 SGK Toán 11 tập 2 - Cùng khám phá


Cho hình chóp tam giác đều S.ABC có cạnh bên bằng 4a và cạnh đáy bằng 6a. Tính khoảng cách từ S đến mặt phẳng (ABC).

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Cho hình chóp tam giác đều S.ABC có cạnh bên bằng 4a và cạnh đáy bằng 6a. Tính khoảng cách từ S đến mặt phẳng (ABC).

Phương pháp giải - Xem chi tiết

Tìm khoảng cách giữa M và (P):

+ Tìm (Q) chứa M và vuông góc với (P) theo giao tuyến d.

+ Từ M hạ MH vuông góc với d (H thuộc d).

+ Khi đó MH là khoảng cách cần tìm.

Lời giải chi tiết

Gọi O là trọng tâm tam giác ABC

Ta có: BC \(\bot\) AF, BC \(\bot\) SF

\(\Rightarrow\) BC \(\bot\) (SAF). Do đó, BC \(\bot\) SO (1)

Tương tự, AB \(\bot\) (SCK). Suy ra, AB \(\bot\) SO (2)

Từ (1) và(2), SO \(\bot\) (ABC)

Vậy d(S,(ABC)) =  SO

\(\begin{array}{l}AH = 3\sqrt 3 a\\AO = \frac{2}{3}AH = 2\sqrt 3 \\SO = \sqrt {S{A^2} - A{O^2}}  = 2a\end{array}\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí