Bài 8.13 trang 72 SGK Toán 11 tập 2 - Cùng khám phá


Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, \(SA = \sqrt 3 a\), \(SA \bot \left( {ABCD} \right)\). Tính số đo của góc nhị diện \(\left[ {S,CD,A} \right]\).

Đề bài

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, \(SA = \sqrt 3 a\), \(SA \bot \left( {ABCD} \right)\). Tính số đo của góc nhị diện \(\left[ {S,CD,A} \right]\).

Phương pháp giải - Xem chi tiết

Cách tìm số đo của góc nhị diện \(\left[ {S,CD,A} \right]\):

+ Tìm giao tuyến d của (SCD) và (ACD).

+ Tìm \(a \subset \left( {SCD} \right)\) vuông góc với CD. Tìm \(b \subset \left( {ACD} \right)\) vuông góc với CD.

+ Tính \(\left( {a,b} \right)\).

Lời giải chi tiết

SA vuông góc với CD (Vì \(SA \bot \left( {ABCD} \right)\))

AD vuông góc với CD

Nên (SAD) vuông góc với CD

Suy ra SD vuông góc với CD

Vậy góc phẳng nhị diện \(\left[ {S,CD,A} \right]\) là góc SDA

\(\tan \widehat {SDA} = \frac{{SA}}{{AD}} = \frac{{\sqrt 3 a}}{a} = \sqrt 3  \Rightarrow \widehat {SDA} = {60^0}\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí