Bài 63 trang 50 SGK Toán 7 tập 2


Giải bài 63 trang 50 SGK Toán 7 tập 2. Cho đa thức: a)Sắp xếp các hạng tử của đa thức trên theo lũy thừa giảm của biến.

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Cho đa thức: \(M(x) = 5{{\rm{x}}^3} + 2{{\rm{x}}^4} - {x^2} + 3{{\rm{x}}^2} - {x^3}\)\( - {x^4} + 1 - 4{{\rm{x}}^3}\)

LG a

Sắp xếp các hạng tử của đa thức trên theo lũy thừa giảm của biến.

Phương pháp giải:

Thu gọn đa thức \(M(x)\) sau đó sắp xếp các hạng tử của đa thức trên theo lũy thừa giảm của biến.

Giải chi tiết:

Rút gọn:

Sắp xếp các hạng tử của đa thức \(M(x)\) theo lũy thừa giảm của biến:

\(M(x)={x^4} + 2{x^2} + 1\)

LG b

Tính \(M(1)\) và \(M(-1)\)

Phương pháp giải:

Thay giá trị tương ứng của \(x\) vào đa thức sau khi đã rút gọn rồi tính giá trị của đa thức đó.

Giải chi tiết:

Ta có: \(M(x)={x^4} + 2{x^2} + 1\) 

Nên: 

\(M\left( 1 \right) = {1^4} + {2.1^2} + 1 = 4\)

\(M\left( { - 1} \right) = {\left( { - 1} \right)^4} + 2.{\left( { - 1} \right)^2} + 1 = 4\)

LG c

Chứng tỏ rằng đa thức trên không có nghiệm.

Phương pháp giải:

Đa thức không có nghiệm khi và chỉ khi đa thức đó luôn khác \(0\) với mọi \(x\).

Giải chi tiết:

Ta có: \(M\left( x \right) = {x^4} + 2{x^2} + 1\)

Vì \({x^4} \ge 0\) với mọi \(x\, \in\mathbb R\)

và \({x^2} \ge 0\) với mọi \(x\, \in\mathbb R\)
\(\;\Rightarrow {x^4} + 2{x^2} + 1 \ge 1> 0\) với mọi \(x\, \in\mathbb R\)

\(\Rightarrow M\left( x \right)\) không có nghiệm. 

Loigiaihay.com


Bình chọn:
4 trên 114 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 7 - Xem ngay

>> Học trực tuyến lớp 7 trên Tuyensinh247.com mọi lúc, mọi nơi với đầy đủ các môn: Toán, Văn, Anh, Lý, Sử, Sinh cùng các thầy cô giáo dạy giỏi, nổi tiếng.


Gửi bài